Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 23 |
Descriptor
Models | 24 |
Monte Carlo Methods | 24 |
Statistical Bias | 24 |
Statistical Analysis | 12 |
Computation | 11 |
Sample Size | 9 |
Bayesian Statistics | 8 |
Comparative Analysis | 8 |
Error of Measurement | 8 |
Regression (Statistics) | 7 |
Accuracy | 5 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 21 |
Reports - Research | 20 |
Dissertations/Theses -… | 3 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 2 |
Middle Schools | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
Saudi Arabia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Gonzalez, Oscar; MacKinnon, David P. – Educational and Psychological Measurement, 2018
Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…
Descriptors: Statistical Analysis, Monte Carlo Methods, Measurement, Models
Lee, Young Ri; Hong, Sehee – Journal of Experimental Education, 2019
The present study examines bias in parameter estimates and standard error in cross-classified random effect modeling (CCREM) caused by omitting the random interaction effects of the cross-classified factors, focusing on the effect of a sample size within cells and ratio of a small cell. A Monte Carlo simulation study was conducted to compare the…
Descriptors: Interaction, Models, Sample Size, Monte Carlo Methods
Finch, W. Holmes; Shim, Sungok Serena – Educational and Psychological Measurement, 2018
Collection and analysis of longitudinal data is an important tool in understanding growth and development over time in a whole range of human endeavors. Ideally, researchers working in the longitudinal framework are able to collect data at more than two points in time, as this will provide them with the potential for a deeper understanding of the…
Descriptors: Comparative Analysis, Computation, Time, Change
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Luo, Yong; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2019
Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent…
Descriptors: Item Response Theory, Monte Carlo Methods, Markov Processes, Outcome Measures
Kelly, Sean; Ye, Feifei – Journal of Experimental Education, 2017
Educational analysts studying achievement and other educational outcomes frequently encounter an association between initial status and growth, which has important implications for the analysis of covariate effects, including group differences in growth. As explicated by Allison (1990), where only two time points of data are available, identifying…
Descriptors: Regression (Statistics), Models, Error of Measurement, Scores
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Li, Tongyun; Jiao, Hong; Macready, George B. – Educational and Psychological Measurement, 2016
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Descriptors: Item Response Theory, Psychometrics, Test Construction, Monte Carlo Methods
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Lang, Kyle M.; Little, Todd D. – International Journal of Behavioral Development, 2014
We present a new paradigm that allows simplified testing of multiparameter hypotheses in the presence of incomplete data. The proposed technique is a straight-forward procedure that combines the benefits of two powerful data analytic tools: multiple imputation and nested-model ?2 difference testing. A Monte Carlo simulation study was conducted to…
Descriptors: Hypothesis Testing, Data Analysis, Error of Measurement, Computation
López-López, José Antonio; Botella, Juan; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio – Journal of Educational and Behavioral Statistics, 2013
Since heterogeneity between reliability coefficients is usually found in reliability generalization studies, moderator analyses constitute a crucial step for that meta-analytic approach. In this study, different procedures for conducting mixed-effects meta-regression analyses were compared. Specifically, four transformation methods for the…
Descriptors: Reliability, Generalization, Meta Analysis, Regression (Statistics)
Previous Page | Next Page »
Pages: 1 | 2