Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 11 |
Descriptor
Error of Measurement | 11 |
Randomized Controlled Trials | 11 |
Statistical Bias | 11 |
Computation | 5 |
Causal Models | 4 |
Educational Research | 4 |
Simulation | 4 |
Statistical Inference | 4 |
Equations (Mathematics) | 3 |
Intervention | 3 |
Models | 3 |
More ▼ |
Source
Society for Research on… | 3 |
Grantee Submission | 2 |
Journal of Research on… | 2 |
Journal of Educational and… | 1 |
MDRC | 1 |
National Center for Education… | 1 |
Sociological Methods &… | 1 |
Author
Miratrix, Luke W. | 3 |
Weiss, Michael J. | 3 |
Deke, John | 2 |
Lockwood, J. R. | 2 |
McCaffrey, Daniel F. | 2 |
Pashley, Nicole E. | 2 |
Adam Sales | 1 |
Botelho, A. F. | 1 |
Chiang, Hanley | 1 |
Daniel Almirall | 1 |
Erickson, J. A. | 1 |
More ▼ |
Publication Type
Reports - Research | 9 |
Journal Articles | 4 |
Reports - Descriptive | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Timothy Lycurgus; Daniel Almirall – Society for Research on Educational Effectiveness, 2024
Background: Education scientists are increasingly interested in constructing interventions that are adaptive over time to suit the evolving needs of students, classrooms, or schools. Such "adaptive interventions" (also referred to as dynamic treatment regimens or dynamic instructional regimes) determine which treatment should be offered…
Descriptors: Educational Research, Research Design, Randomized Controlled Trials, Intervention
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Adam Sales; Ethan Prhiar; Thanaporn March Patikorn – Society for Research on Educational Effectiveness, 2021
In a randomized controlled trial (RCT), some subjects assigned to the treatment condition may not fully comply. Often there is interest in the effect of the treatment within the "principal stratum" of subjects who would comply if assigned to treatment. However, it is unknown which control subjects would have complied if treated and which…
Descriptors: Randomized Controlled Trials, Scores, Probability, Statistical Analysis
Miratrix, Luke W.; Weiss, Michael J.; Henderson, Brit – Journal of Research on Educational Effectiveness, 2021
Researchers face many choices when conducting large-scale multisite individually randomized control trials. One of the most common quantities of interest in multisite RCTs is the overall average effect. Even this quantity is non-trivial to define and estimate. The researcher can target the average effect across individuals or sites. Furthermore,…
Descriptors: Computation, Randomized Controlled Trials, Error of Measurement, Regression (Statistics)
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Weiss, Michael J.; Lockwood, J. R.; McCaffrey, Daniel F. – MDRC, 2014
In many experimental evaluations in the social and medical sciences, individuals are randomly assigned to a treatment arm or a control arm of the experiment. After treatment assignment is determined, individuals within one or both experimental arms are frequently grouped together (e.g., within classrooms or schools, through shared case managers,…
Descriptors: Error of Measurement, Randomized Controlled Trials, Correlation, Computation
Weiss, Michael J.; Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Research on Educational Effectiveness, 2016
In the "individually randomized group treatment" (IRGT) experimental design, individuals are first randomly assigned to a treatment arm or a control arm, but then within each arm, are grouped together (e.g., within classrooms/schools, through shared case managers, in group therapy sessions, through shared doctors, etc.) to receive…
Descriptors: Randomized Controlled Trials, Error of Measurement, Control Groups, Experimental Groups
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Deke, John; Chiang, Hanley – Society for Research on Educational Effectiveness, 2014
Meeting the What Works Clearinghouse (WWC) attrition standard (or one of the attrition standards based on the WWC standard) is now an important consideration for researchers conducting studies that could potentially be reviewed by the WWC (or other evidence reviews). Understanding the basis of this standard is valuable for anyone seeking to meet…
Descriptors: Attrition (Research Studies), Student Attrition, Randomized Controlled Trials, Standards