Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 27 |
Descriptor
Error of Measurement | 30 |
Statistical Bias | 30 |
Structural Equation Models | 30 |
Computation | 13 |
Monte Carlo Methods | 13 |
Sample Size | 12 |
Statistical Analysis | 12 |
Simulation | 8 |
Correlation | 7 |
Goodness of Fit | 6 |
Sampling | 6 |
More ▼ |
Source
Author
Konold, Timothy R. | 3 |
Bradshaw, Catherine P. | 2 |
Kush, Joseph M. | 2 |
Aiken, Leona S. | 1 |
Ayse Busra Ceviren | 1 |
Bandalos, Deborah L. | 1 |
Bentler, Peter M. | 1 |
Bogaert, Jasper | 1 |
Cai, Li | 1 |
Cao, Chunhua | 1 |
Carl Falk | 1 |
More ▼ |
Publication Type
Journal Articles | 25 |
Reports - Research | 24 |
Reports - Evaluative | 4 |
Dissertations/Theses -… | 1 |
Opinion Papers | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 4 |
Grade 5 | 2 |
Adult Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 7 | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Researchers | 1 |
Location
Cyprus | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Ayse Busra Ceviren – ProQuest LLC, 2024
Latent change score (LCS) models are a powerful class of structural equation modeling that allows researchers to work with latent difference scores that minimize measurement error. LCS models define change as a function of prior status, which makes it well-suited for modeling developmental theories or processes. In LCS models, like other latent…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Bias, Monte Carlo Methods
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Televantou, Ioulia; Marsh, Herbert W.; Kyriakides, Leonidas; Nagengast, Benjamin; Fletcher, John; Malmberg, Lars-Erik – School Effectiveness and School Improvement, 2015
The main objective of this study was to quantify the impact of failing to account for measurement error on school compositional effects. Multilevel structural equation models were incorporated to control for measurement error and/or sampling error. Study 1, a large sample of English primary students in Years 1 and 4, revealed a significantly…
Descriptors: Hierarchical Linear Modeling, Statistical Bias, Error of Measurement, Educational Research
Garnier-Villarreal, Mauricio; Rhemtulla, Mijke; Little, Todd D. – International Journal of Behavioral Development, 2014
We examine longitudinal extensions of the two-method measurement design, which uses planned missingness to optimize cost-efficiency and validity of hard-to-measure constructs. These designs use a combination of two measures: a "gold standard" that is highly valid but expensive to administer, and an inexpensive (e.g., survey-based)…
Descriptors: Longitudinal Studies, Data Analysis, Error of Measurement, Research Problems
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Previous Page | Next Page ยป
Pages: 1 | 2