NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 40 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Ferdinand Valentin Stoye; Claudia Tschammler; Oliver Kuss; Annika Hoyer – Research Synthesis Methods, 2024
The development of new statistical models for the meta-analysis of diagnostic test accuracy studies is still an ongoing field of research, especially with respect to summary receiver operating characteristic (ROC) curves. In the recently published updated version of the "Cochrane Handbook for Systematic Reviews of Diagnostic Test…
Descriptors: Diagnostic Tests, Accuracy, Barriers, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Frömke, Cornelia; Kirstein, Mathia; Zapf, Antonia – Research Synthesis Methods, 2022
The accuracy of a diagnostic test is often expressed using a pair of measures: sensitivity (proportion of test positives among all individuals with target condition) and specificity (proportion of test negatives among all individuals without target condition). If the outcome of a diagnostic test is binary, results from different studies can easily…
Descriptors: Accuracy, Diagnostic Tests, Meta Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lonneke Boels; Arthur Bakker; Wim Van Dooren; Paul Drijvers – Educational Studies in Mathematics, 2025
Many students persistently misinterpret histograms. This calls for closer inspection of students' strategies when interpreting histograms and case-value plots (which look similar but are different). Using students' gaze data, we ask: "How and how well do upper secondary pre-university school students estimate and compare arithmetic means of…
Descriptors: Secondary School Students, Learning Strategies, Data Interpretation, Graphs
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hoyer, Annika; Kuss, Oliver – Research Synthesis Methods, 2020
Diagnostic accuracy studies often evaluate diagnostic tests at several threshold values, aiming to make recommendations on optimal thresholds for use in practice. Methods for meta-analysis of full receiver operating characteristic (ROC) curves have been proposed but still have deficiencies. We recently proposed a parametric approach that is based…
Descriptors: Diagnostic Tests, Research Methodology, Accuracy, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David; Wang, Tonghui; Wang, Cong – Educational and Psychological Measurement, 2019
Two recent publications in "Educational and Psychological Measurement" advocated that researchers consider using the a priori procedure. According to this procedure, the researcher specifies, prior to data collection, how close she wishes her sample mean(s) to be to the corresponding population mean(s), and the desired probability of…
Descriptors: Statistical Distributions, Sample Size, Equations (Mathematics), Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Köse, Alper; Dogan, C. Deha – International Journal of Evaluation and Research in Education, 2019
The aim of this study was to examine the precision of item parameter estimation in different sample sizes and test lengths under three parameter logistic model (3PL) item response theory (IRT) model, where the trait measured by a test was not normally distributed or had a skewed distribution. In the study, number of categories (1-0), and item…
Descriptors: Statistical Bias, Item Response Theory, Simulation, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dorans, Neil J. – ETS Research Report Series, 2018
A distinction is made between scores as measures of a construct and predictions of a criterion or outcome variable. The interpretation attached to predictions of criteria, such as job performance or college grade point average (GPA), differs from that attached to scores that are measures of a construct, such as reading proficiency or knowledge…
Descriptors: Job Performance, Scores, Data Interpretation, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Wendy; Deary, Ian J.; Bouchard, Thomas J., Jr. – Educational and Psychological Measurement, 2018
Most study samples show less variability in key variables than do their source populations due most often to indirect selection into study participation associated with a wide range of personal and circumstantial characteristics. Formulas exist to correct the distortions of population-level correlations created. Formula accuracy has been tested…
Descriptors: Correlation, Sampling, Statistical Distributions, Accuracy
Yildiz, Mustafa – ProQuest LLC, 2017
Student misconceptions have been studied for decades from a curricular/instructional perspective and from the assessment/test level perspective. Numerous misconception assessment tools have been developed in order to measure students' misconceptions relative to the correct content. Often, these tools are used to make a variety of educational…
Descriptors: Misconceptions, Students, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lem, Stephanie; Baert, Kathy; Ceulemans, Eva; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim – Educational Psychology, 2017
The ability to interpret graphs is highly important in modern society, but has proven to be a challenge for many people. In this paper, two teaching methods were used to remediate one specific misinterpretation: the area misinterpretation of box plots. First, we used refutational text to explicitly state and invalidate the area misinterpretation…
Descriptors: Graphs, Teaching Methods, Misconceptions, Statistical Data
Previous Page | Next Page »
Pages: 1  |  2  |  3