NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers6
Location
California1
Texas1
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 104 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tong-Rong Yang; Li-Jen Weng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In Savalei's (2011) simulation that evaluated the performance of polychoric correlation estimates in small samples, two methods for treating zero-frequency cells, adding 0.5 (ADD) and doing nothing (NONE), were compared. Savalei tentatively suggested using ADD for binary data and NONE for data with three or more categories. Yet, Savalei's…
Descriptors: Correlation, Statistical Distributions, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Aimel Zafar; Manzoor Khan; Muhammad Yousaf – Measurement: Interdisciplinary Research and Perspectives, 2024
Subjects with initially extreme observations upon remeasurement are found closer to the population mean. This tendency of observations toward the mean is called regression to the mean (RTM) and can make natural variation in repeated data look like real change. Studies, where subjects are selected on a baseline criterion, should be guarded against…
Descriptors: Measurement, Regression (Statistics), Statistical Distributions, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
April E. Cho; Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2022
Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a general framework for specifying the functional relationship between a respondent's multiple latent traits and their response to assessment items. The key element in MIRT is the relationship between the items and the latent traits, so-called item factor…
Descriptors: Factor Analysis, Item Response Theory, Mathematics, Computation
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Multivariate Analysis, Statistical Distributions, Monte Carlo Methods
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Statistical Distributions, Multivariate Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Xin; Jiao, Hong; He, Qiwei – Journal of Educational Measurement, 2023
Multiple group modeling is one of the methods to address the measurement noninvariance issue. Traditional studies on multiple group modeling have mainly focused on item responses. In computer-based assessments, joint modeling of response times and action counts with item responses helps estimate the latent speed and action levels in addition to…
Descriptors: Multivariate Analysis, Models, Item Response Theory, Statistical Distributions
Pustejovsky, James E.; Swan, Daniel M.; English, Kyle W. – Grantee Submission, 2019
There has been growing interest in using statistical methods to analyze data and estimate effect size indices from studies that use single-case designs (SCDs), as a complement to traditional visual inspection methods. The validity of a statistical method rests on whether its assumptions are plausible representations of the process by which the…
Descriptors: Measurement Techniques, Statistical Analysis, Data, Outcome Measures
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nordstokke, David W.; Colp, S. Mitchell – Practical Assessment, Research & Evaluation, 2018
Often, when testing for shift in location, researchers will utilize nonparametric statistical tests in place of their parametric counterparts when there is evidence or belief that the assumptions of the parametric test are not met (i.e., normally distributed dependent variables). An underlying and often unattended to assumption of nonparametric…
Descriptors: Nonparametric Statistics, Statistical Analysis, Monte Carlo Methods, Sample Size
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7