NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 123 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Muhammad Aslam – Measurement: Interdisciplinary Research and Perspectives, 2025
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for…
Descriptors: Statistical Distributions, Algorithms, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Claire Miller – ProQuest LLC, 2024
Data are everywhere. Data collected from samples are often reported in the form of polls, medical studies, and advertisement information and an understanding of sampling distributions and statistical inference is important for evaluating data-based claims (Bargagliotti et al., 2020). Despite the importance of understanding statistical inference…
Descriptors: Novices, Thinking Skills, Sampling, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Siwei – Sociological Methods & Research, 2023
One of the most important developments in the current era of social sciences is the growing availability and diversity of data, big and small. Social scientists increasingly combine information from multiple data sets in their research. While conducting statistical analyses with linked data is relatively straightforward, borrowing information…
Descriptors: Social Science Research, Statistical Analysis, Statistical Distributions, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Barr, Abigail; Miller, Luis; Ubeda, Paloma – Sociological Methods & Research, 2023
We present a set of studies the objective of which was to test the robustness of the acknowledgment of earned entitlement effect across different experimental modes and populations. We present three sets of results. The first is derived from a between-subject analysis of two independent, but comparable samples of nonstudent adults. One sample…
Descriptors: Robustness (Statistics), Sampling, Surveys, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Vinay Kumar Yadav; Shakti Prasad – Measurement: Interdisciplinary Research and Perspectives, 2024
In sample survey analysis, accurate population mean estimation is an important task, but traditional approaches frequently ignore the intricacies of real-world data, leading to biassed results. In order to handle uncertainties, indeterminacies, and ambiguity, this work presents an innovative approach based on neutrosophic statistics. We proposed…
Descriptors: Sampling, Statistical Bias, Predictor Variables, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth – American Journal of Evaluation, 2022
Practitioners and policymakers often want estimates of the effect of an intervention for their local community, e.g., region, state, county. In the ideal, these multiple population average treatment effect (ATE) estimates will be considered in the design of a single randomized trial. Methods for sample selection for generalizing the sample ATE to…
Descriptors: Sampling, Sample Size, Selection, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wendy – American Journal of Evaluation, 2022
Over the past ten years, propensity score methods have made an important contribution to improving generalizations from studies that do not select samples randomly from a population of inference. However, these methods require assumptions and recent work has considered the role of bounding approaches that provide a range of treatment impact…
Descriptors: Probability, Scores, Scoring, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rodriguez, AE; Rosen, John – Research in Higher Education Journal, 2023
The various empirical models built for enrollment management, operations, and program evaluation purposes may have lost their predictive power as a result of the recent collective impact of COVID restrictions, widespread social upheaval, and the shift in educational preferences. This statistical artifact is known as model drifting, data-shift,…
Descriptors: Models, Enrollment Management, School Holding Power, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Stanley, T. D.; Doucouliagos, Hristos – Research Synthesis Methods, 2023
Partial correlation coefficients are often used as effect sizes in the meta-analysis and systematic review of multiple regression analysis research results. There are two well-known formulas for the variance and thereby for the standard error (SE) of partial correlation coefficients (PCC). One is considered the "correct" variance in the…
Descriptors: Correlation, Statistical Bias, Error Patterns, Error Correction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Donoghue, John R.; McClellan, Catherine A.; Hess, Melinda R. – ETS Research Report Series, 2022
When constructed-response items are administered for a second time, it is necessary to evaluate whether the current Time B administration's raters have drifted from the scoring of the original administration at Time A. To study this, Time A papers are sampled and rescored by Time B scorers. Commonly the scores are compared using the proportion of…
Descriptors: Item Response Theory, Test Construction, Scoring, Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Özmen, Zeynep Medine; Güven, Bülent – Journal of Pedagogical Research, 2022
The present study aimed to remediate pre-service teachers' misconceptions about sampling distributions and to develop their conceptual understanding through the use of conceptual change texts (CCTs). The participants consisted of 84 pre-service teachers. To determine the pre-service teachers' conceptual understanding of sampling distributions, an…
Descriptors: Preservice Teachers, Mathematics Teachers, Sampling, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Kula, Fulya; Koçer, Rüya Gökhan – Teaching Mathematics and Its Applications, 2020
Difficulties in learning (and thus teaching) statistical inference are well reported in the literature. We argue the problem emanates not only from the way in which statistical inference is taught but also from what exactly is taught as statistical inference. What makes statistical inference difficult to understand is that it contains two logics…
Descriptors: Statistical Inference, Teaching Methods, Difficulty Level, Comprehension
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9