NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Higher Education1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Siwei – Sociological Methods & Research, 2023
One of the most important developments in the current era of social sciences is the growing availability and diversity of data, big and small. Social scientists increasingly combine information from multiple data sets in their research. While conducting statistical analyses with linked data is relatively straightforward, borrowing information…
Descriptors: Social Science Research, Statistical Analysis, Statistical Distributions, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Barr, Abigail; Miller, Luis; Ubeda, Paloma – Sociological Methods & Research, 2023
We present a set of studies the objective of which was to test the robustness of the acknowledgment of earned entitlement effect across different experimental modes and populations. We present three sets of results. The first is derived from a between-subject analysis of two independent, but comparable samples of nonstudent adults. One sample…
Descriptors: Robustness (Statistics), Sampling, Surveys, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Hollenbach, Florian M.; Bojinov, Iavor; Minhas, Shahryar; Metternich, Nils W.; Ward, Michael D.; Volfovsky, Alexander – Sociological Methods & Research, 2021
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this article, we present a simple-to-use method for generating multiple imputations (MIs) using a Gaussian copula. The…
Descriptors: Data, Statistical Analysis, Statistical Distributions, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Elbers, Benjamin – Sociological Methods & Research, 2023
An important topic in the study of segregation are comparisons across space and time. This article extends current approaches in segregation measurement by presenting a five-term decomposition procedure that can be used to understand more clearly why segregation has changed or differs between two comparison points. Two of the five terms account…
Descriptors: Social Science Research, School Segregation, Equal Opportunities (Jobs), Residential Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Jasso, Guillermina – Sociological Methods & Research, 2021
Inequality often appears in linked pairs of variables. Examples include schooling and income, income and consumption, and wealth and happiness. Consider the famous words of Veblen: "wealth confers honor." Understanding inequality requires understanding input inequality, outcome inequality, and the relation between the two--in both…
Descriptors: Input Output Analysis, Justice, Research Methodology, Social Science Research
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Multivariate Analysis, Statistical Distributions, Monte Carlo Methods
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Statistical Distributions, Multivariate Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Young, Cristobal; Holsteen, Katherine – Sociological Methods & Research, 2017
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
Descriptors: Models, Ambiguity (Context), Robustness (Statistics), Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando – Educational and Psychological Measurement, 2017
We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…
Descriptors: Research Methodology, Hypothesis Testing, Psychology, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Jozwiak, Katarzyna; Moerbeek, Mirjam – Journal of Educational and Behavioral Statistics, 2012
Studies on event occurrence aim to investigate if and when subjects experience a particular event. The timing of events may be measured continuously using thin precise units or discretely using time periods. The latter metric of time is often used in social science research and the generalized linear model (GLM) is an appropriate model for data…
Descriptors: Statistical Analysis, Time, Sample Size, Social Science Research
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Previous Page | Next Page ยป
Pages: 1  |  2