NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Does not meet standards1
Showing 1 to 15 of 381 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Siwei – Sociological Methods & Research, 2023
One of the most important developments in the current era of social sciences is the growing availability and diversity of data, big and small. Social scientists increasingly combine information from multiple data sets in their research. While conducting statistical analyses with linked data is relatively straightforward, borrowing information…
Descriptors: Social Science Research, Statistical Analysis, Statistical Distributions, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Spit, Sybren; Andringa, Sible; Rispens, Judith; Aboh, Enoch O. – Journal of Psycholinguistic Research, 2022
Many studies demonstrate that detecting statistical regularities in linguistic input plays a key role in language acquisition. Yet, it is unclear to what extent statistical learning is involved in more naturalistic settings, when young children have to acquire meaningful grammatical elements. In the present study, we address these points, by…
Descriptors: Kindergarten, Grammar, Statistical Analysis, Statistical Distributions
Rebeka Man – ProQuest LLC, 2024
In today's era of large-scale data, academic institutions, businesses, and government agencies are increasingly faced with heterogeneous datasets. Consequently, there is a growing need to develop effective methods for extracting meaningful insights from this type of data. Quantile, expectile, and expected shortfall regression methods offer useful…
Descriptors: Data, Data Analysis, Data Use, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Schumacker, Randall; Morell, Monica; Wang, Yurou – Educational and Psychological Measurement, 2022
While hierarchical linear modeling is often used in social science research, the assumption of normally distributed residuals at the individual and cluster levels can be violated in empirical data. Previous studies have focused on the effects of nonnormality at either lower or higher level(s) separately. However, the violation of the normality…
Descriptors: Hierarchical Linear Modeling, Statistical Distributions, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Migliavaca, Celina Borges; Stein, Cinara; Colpani, Verônica; Barker, Timothy Hugh; Ziegelmann, Patricia Klarmann; Munn, Zachary; Falavigna, Maicon – Research Synthesis Methods, 2022
Over the last decade, there has been a 10-fold increase in the number of published systematic reviews of prevalence. In meta-analyses of prevalence, the summary estimate represents an average prevalence from included studies. This estimate is truly informative only if there is no substantial heterogeneity among the different contexts being pooled.…
Descriptors: Incidence, Meta Analysis, Statistics, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Wenhao; Siegel, Lianne; Zhou, Jincheng; Zhu, Motao; Tong, Tiejun; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
A reference interval provides a basis for physicians to determine whether a measurement is typical of a healthy individual. It can be interpreted as a prediction interval for a new individual from the overall population. However, a reference interval based on a single study may not be representative of the broader population. Meta-analysis can…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Guastadisegni, Lucia; Cagnone, Silvia; Moustaki, Irini; Vasdekis, Vassilis – Educational and Psychological Measurement, 2022
This article studies the Type I error, false positive rates, and power of four versions of the Lagrange multiplier test to detect measurement noninvariance in item response theory (IRT) models for binary data under model misspecification. The tests considered are the Lagrange multiplier test computed with the Hessian and cross-product approach,…
Descriptors: Measurement, Statistical Analysis, Item Response Theory, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Frömke, Cornelia; Kirstein, Mathia; Zapf, Antonia – Research Synthesis Methods, 2022
The accuracy of a diagnostic test is often expressed using a pair of measures: sensitivity (proportion of test positives among all individuals with target condition) and specificity (proportion of test negatives among all individuals without target condition). If the outcome of a diagnostic test is binary, results from different studies can easily…
Descriptors: Accuracy, Diagnostic Tests, Meta Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Riley, Richard D.; Collins, Gary S.; Hattle, Miriam; Whittle, Rebecca; Ensor, Joie – Research Synthesis Methods, 2023
Before embarking on an individual participant data meta-analysis (IPDMA) project, researchers should consider the power of their planned IPDMA conditional on the studies promising their IPD and their characteristics. Such power estimates help inform whether the IPDMA project is worth the time and funding investment, before IPD are collected. Here,…
Descriptors: Computation, Meta Analysis, Participant Characteristics, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Yuxiang Gao; Lauren Kennedy; Daniel Simpson; Andrew Gelman – Grantee Submission, 2021
A central theme in the field of survey statistics is estimating population-level quantities through data coming from potentially non-representative samples of the population. Multilevel regression and poststratification (MRP), a model-based approach, is gaining traction against the traditional weighted approach for survey estimates. MRP estimates…
Descriptors: Regression (Statistics), Statistical Analysis, Surveys, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sandra Jo Wilson; Brian Freeman; E. C. Hedberg – Grantee Submission, 2024
As reporting of effect sizes in evaluation studies has proliferated, researchers and consumers of research need tools for interpreting or benchmarking the magnitude of those effect sizes that are relevant to the intervention, target population, and outcome measure being considered. Similarly, researchers planning education studies with social and…
Descriptors: Benchmarking, Effect Size, Meta Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hollenbach, Florian M.; Bojinov, Iavor; Minhas, Shahryar; Metternich, Nils W.; Ward, Michael D.; Volfovsky, Alexander – Sociological Methods & Research, 2021
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this article, we present a simple-to-use method for generating multiple imputations (MIs) using a Gaussian copula. The…
Descriptors: Data, Statistical Analysis, Statistical Distributions, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orcan, Fatih – International Journal of Assessment Tools in Education, 2020
Checking the normality assumption is necessary to decide whether a parametric or non-parametric test needs to be used. Different ways are suggested in literature to use for checking normality. Skewness and kurtosis values are one of them. However, there is no consensus which values indicated a normal distribution. Therefore, the effects of…
Descriptors: Nonparametric Statistics, Statistical Analysis, Comparative Analysis, Statistical Distributions
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  26