Publication Date
In 2025 | 0 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 26 |
Descriptor
Statistical Distributions | 37 |
Structural Equation Models | 37 |
Maximum Likelihood Statistics | 10 |
Factor Analysis | 9 |
Error of Measurement | 8 |
Goodness of Fit | 8 |
Monte Carlo Methods | 8 |
Sample Size | 8 |
Statistical Analysis | 8 |
Computation | 7 |
Correlation | 7 |
More ▼ |
Source
Author
Ke-Hai Yuan | 3 |
Yuan, Ke-Hai | 3 |
Zhiyong Zhang | 3 |
Bentler, Peter M. | 2 |
Conley, Sharon | 2 |
Ling Ling | 2 |
Lu, Zhenqiu | 2 |
Zhang, Zhiyong | 2 |
Aaron T. McLaughlin | 1 |
Aberg-Bengtsson, Lisbeth | 1 |
Acosta, Sandra | 1 |
More ▼ |
Publication Type
Journal Articles | 35 |
Reports - Research | 23 |
Reports - Evaluative | 10 |
Reports - Descriptive | 4 |
Speeches/Meeting Papers | 3 |
Education Level
Secondary Education | 4 |
High Schools | 3 |
Grade 9 | 2 |
Higher Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Program for International… | 1 |
Schools and Staffing Survey… | 1 |
What Works Clearinghouse Rating
Russell P. Houpt; Kevin J. Grimm; Aaron T. McLaughlin; Daryl R. Van Tongeren – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Numerous methods exist to determine the optimal number of classes when using latent profile analysis (LPA), but none are consistently correct. Recently, the likelihood incremental percentage per parameter (LI3P) was proposed as a model effect-size measure. To evaluate the LI3P more thoroughly, we simulated 50,000 datasets, manipulating factors…
Descriptors: Structural Equation Models, Profiles, Sample Size, Evaluation Methods
Keke Lai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
When a researcher proposes an SEM model to explain the dynamics among some latent variables, the real question in model evaluation is the fit of the model's structural part. A composite index that lumps the fit of the structural part and measurement part does not directly address that question. The need for more attention to structural-level fit…
Descriptors: Goodness of Fit, Structural Equation Models, Statistics, Statistical Distributions
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Son, Sookyoung; Lee, Hyunjung; Jang, Yoona; Yang, Junyeong; Hong, Sehee – Educational and Psychological Measurement, 2019
The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew-t with equal skew and skew-t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with…
Descriptors: Statistical Distributions, Statistical Analysis, Structural Equation Models, Comparative Analysis
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Oort, Frans J.; Jak, Suzanne – Research Synthesis Methods, 2016
Meta-analytic structural equation modeling (MASEM) involves fitting models to a common population correlation matrix that is estimated on the basis of correlation coefficients that are reported by a number of independent studies. MASEM typically consist of two stages. The method that has been found to perform best in terms of statistical…
Descriptors: Maximum Likelihood Statistics, Meta Analysis, Structural Equation Models, Correlation
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability