ERIC Number: EJ1447360
Record Type: Journal
Publication Date: 2024-Nov
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1759-2879
EISSN: EISSN-1759-2887
Available Date: N/A
A Discrete Time-to-Event Model for the Meta-Analysis of Full ROC Curves
Research Synthesis Methods, v15 n6 p1031-1048 2024
The development of new statistical models for the meta-analysis of diagnostic test accuracy studies is still an ongoing field of research, especially with respect to summary receiver operating characteristic (ROC) curves. In the recently published updated version of the "Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy", the authors point to the challenges of this kind of meta-analysis and propose two approaches. However, both of them come with some disadvantages, such as the nonstraightforward choice of priors in Bayesian models or the requirement of a two-step approach where parameters are estimated for the individual studies, followed by summarizing the results. As an alternative, we propose a novel model by applying methods from time-to-event analysis. To this task we use the discrete proportional hazard approach to treat the different diagnostic thresholds, that provide means to estimate sensitivity and specificity and are reported by the single studies, as categorical variables in a generalized linear mixed model, using both the logit- and the asymmetric cloglog-link. This leads to a model specification with threshold-specific discrete hazards, avoiding a linear dependency between thresholds, discrete hazard, and sensitivity/specificity and thus increasing model flexibility. We compare the resulting models to approaches from the literature in a simulation study. While the estimated area under the summary ROC curve is estimated comparably well in most approaches, the results depict substantial differences in the estimated sensitivities and specificities. We also show the practical applicability of the models to data from a meta-analysis for the screening of type 2 diabetes.
Descriptors: Diagnostic Tests, Accuracy, Barriers, Models, Data, Simulation, Diabetes, Screening Tests, Statistical Distributions
Wiley. Available from: John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030. Tel: 800-835-6770; e-mail: cs-journals@wiley.com; Web site: https://www.wiley.com/en-us
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Data File: URL: https://gitlab.ub.uni-bielefeld.de/stoyef/metaROC/-/tree/discrete_GLMM_paper/code_discrete_glmm_paper
Author Affiliations: N/A