NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi – Educational and Psychological Measurement, 2014
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
Descriptors: Sampling, Statistical Inference, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu – Multivariate Behavioral Research, 2007
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
Descriptors: Multivariate Analysis, Statistical Analysis, Statistical Inference, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Yuan, Ke-Hai – Multivariate Behavioral Research, 2009
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
Descriptors: Statistical Inference, Goodness of Fit, Structural Equation Models, Transformations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Bentler, Peter M. – Psychometrika, 2004
Since data in social and behavioral sciences are often hierarchically organized, special statistical procedures for covariance structure models have been developed to reflect such hierarchical structures. Most of these developments are based on a multivariate normality distribution assumption, which may not be realistic for practical data. It is…
Descriptors: Statistical Analysis, Statistical Inference, Statistical Distributions, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Lambert, Paul L.; Fouladi, Rachel T. – Multivariate Behavioral Research, 2004
Mardia's measure of multivariate kurtosis has been implemented in many statistical packages commonly used by social scientists. It provides important information on whether a commonly used multivariate procedure is appropriate for inference. Many statistical packages also have options for missing data. However, there is no procedure for applying…
Descriptors: Social Science Research, Research Methodology, Statistical Distributions, Statistical Analysis