Publication Date
In 2025 | 3 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 21 |
Since 2016 (last 10 years) | 55 |
Since 2006 (last 20 years) | 123 |
Descriptor
Statistical Inference | 160 |
Statistics | 43 |
Statistical Analysis | 40 |
Probability | 38 |
Computation | 33 |
Teaching Methods | 33 |
Computer Software | 25 |
Hypothesis Testing | 24 |
Sampling | 23 |
Bayesian Statistics | 22 |
Mathematics Instruction | 20 |
More ▼ |
Source
Author
Day, Lorraine | 2 |
Gelman, Andrew | 2 |
Ledermann, Thomas | 2 |
Lu, Yonggang | 2 |
Macho, Siegfried | 2 |
Makar, Katie | 2 |
Moen, David H. | 2 |
Ojeda, Mario Miguel | 2 |
Onwuegbuzie, Anthony J. | 2 |
Petocz, Peter | 2 |
Powell, John E. | 2 |
More ▼ |
Publication Type
Education Level
Location
Australia | 8 |
Canada | 2 |
Asia | 1 |
Brazil | 1 |
Chile | 1 |
Georgia | 1 |
India | 1 |
Louisiana | 1 |
Netherlands | 1 |
New Zealand | 1 |
Pennsylvania | 1 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
National Assessment of… | 1 |
Program for International… | 1 |
Progress in International… | 1 |
SAT (College Admission Test) | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Hans Humenberger – Teaching Statistics: An International Journal for Teachers, 2025
In the last years special "ovals" appear increasingly often in diagrams and applets for discussing crucial items of statistical inference (when dealing with confidence intervals for an unknown probability p; approximation of the binomial distribution by the normal distribution; especially in German literature, see e.g. [Meyer,…
Descriptors: Computer Oriented Programs, Prediction, Intervals, Statistical Inference
Tenko Raykov; Ahmed Haddadi; Christine DiStefano; Mohammed Alqabbaa – Educational and Psychological Measurement, 2025
This note is concerned with the study of temporal development in several indices reflecting clustering effects in multilevel designs that are frequently utilized in educational and behavioral research. A latent variable method-based approach is outlined, which can be used to point and interval estimate the growth or decline in important functions…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Educational Research, Statistical Inference
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
Hansen, Spencer; Rice, Kenneth – Research Synthesis Methods, 2022
Meta-analysis of proportions is conceptually simple: Faced with a binary outcome in multiple studies, we seek inference on some overall proportion of successes/failures. Under common effect models, exact inference has long been available, but is not when we more realistically allow for heterogeneity of the proportions. Instead a wide range of…
Descriptors: Meta Analysis, Effect Size, Statistical Inference, Intervals
Gwet, Kilem L. – Educational and Psychological Measurement, 2021
Cohen's kappa coefficient was originally proposed for two raters only, and it later extended to an arbitrarily large number of raters to become what is known as Fleiss' generalized kappa. Fleiss' generalized kappa and its large-sample variance are still widely used by researchers and were implemented in several software packages, including, among…
Descriptors: Sample Size, Statistical Analysis, Interrater Reliability, Computation
Tim Erickson – Australian Mathematics Education Journal, 2023
This short article continues the exploration of the Common Online Data Analysis Platform (CODAP) and statistics begun in the previous article "Statistical Investigations and CODAP, Part 1: EDA." In Part 2, the author discusses the teaching of statistical inference focusing on activities for the senior secondary years. In particular, the…
Descriptors: Computer Software, Statistics Education, Statistical Inference, Secondary Education
Luke W. Miratrix – Grantee Submission, 2022
We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting…
Descriptors: Causal Models, Case Studies, Quasiexperimental Design, Monte Carlo Methods
Mortaza Jamshidian; Parsa Jamshidian – Journal of Statistics and Data Science Education, 2024
Using software to teach statistical inference in introductory courses opens the door for methods and practices that are more conceptually appealing to students. With an increasing number of fields requiring competency in statistics including data science, natural and social sciences, public health and more, it is crucial that we as instructors…
Descriptors: Computer Software, Computer Assisted Instruction, Teaching Methods, Statistics Education
Abell, Peter; Engel, Ofer – Sociological Methods & Research, 2021
The article explores the role that subjective evidence of causality and associated counterfactuals and counterpotentials might play in the social sciences where comparative cases are scarce. This scarcity rules out statistical inference based upon frequencies and usually invites in-depth ethnographic studies. Thus, if causality is to be preserved…
Descriptors: Social Science Research, Influences, Ethnography, Bayesian Statistics
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization
Vidushi Adlakha; Eric Kuo – Physical Review Physics Education Research, 2023
Recent critiques of physics education research (PER) studies have revoiced the critical issues when drawing causal inferences from observational data where no intervention is present. In response to a call for a "causal reasoning primer" in PER, this paper discusses some of the fundamental issues in statistical causal inference. In…
Descriptors: Physics, Science Education, Statistical Inference, Causal Models
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Loy, Adam – Journal of Statistics and Data Science Education, 2021
In the classroom, we traditionally visualize inferential concepts using static graphics or interactive apps. For example, there is a long history of using apps to visualize sampling distributions. The lineup protocol for visual inference is a recent development in statistical graphics that has created an opportunity to build student understanding.…
Descriptors: Statistics Education, Statistical Inference, Visualization, Visual Aids
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education