NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Aid to Families with…1
What Works Clearinghouse Rating
Does not meet standards1
Showing 1 to 15 of 201 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Juan F. Muñoz; Pablo J. Moya-Fernández; Encarnación Álvarez-Verdejo – Sociological Methods & Research, 2025
The Gini index is probably the most commonly used indicator to measure inequality. For continuous distributions, the Gini index can be computed using several equivalent formulations. However, this is not the case with discrete distributions, where controversy remains regarding the expression to be used to estimate the Gini index. We attempt to…
Descriptors: Bias, Educational Indicators, Equal Education, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yi Feng – Asia Pacific Education Review, 2024
Causal inference is a central topic in education research, although oftentimes it relies on observational studies, which makes causal identification methodologically challenging. This manuscript introduces causal graphs as a powerful language for elucidating causal theories and an effective tool for causal identification analysis. It discusses…
Descriptors: Causal Models, Graphs, Educational Research, Educational Researchers
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Educational and Psychological Measurement, 2023
The import or force of the result of a statistical test has long been portrayed as consistent with deductive reasoning. The simplest form of deductive argument has a first premise with conditional form, such as p[right arrow]q, which means that "if p is true, then q must be true." Given the first premise, one can either affirm or deny…
Descriptors: Hypothesis Testing, Statistical Analysis, Logical Thinking, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
James Drimalla – Educational Studies in Mathematics, 2025
Inferentialism has emerged as a valuable theoretical resource in mathematics education. As a theory of meaning about the use and content of concepts, it offers a fresh perspective on traditional epistemological and linguistic questions in the field. Despite its emergence, important inferentialist ideas still need to be operationalized. In this…
Descriptors: Mathematics Education, Mathematical Concepts, Inferences, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Schultz – Sociological Methods & Research, 2024
This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering…
Descriptors: Research Methodology, Sequential Approach, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Bonett, Douglas G. – Journal of Educational and Behavioral Statistics, 2022
The limitations of Cohen's ? are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical…
Descriptors: Statistical Inference, Statistical Data, Interrater Reliability, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua Weidlich; Ben Hicks; Hendrik Drachsler – Educational Technology Research and Development, 2024
Researchers tasked with understanding the effects of educational technology innovations face the challenge of providing evidence of causality. Given the complexities of studying learning in authentic contexts interwoven with technological affordances, conducting tightly-controlled randomized experiments is not always feasible nor desirable. Today,…
Descriptors: Educational Research, Educational Technology, Research Design, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Koretz – Journal of Educational and Behavioral Statistics, 2024
A critically important balance in educational measurement between practical concerns and matters of technique has atrophied in recent decades, and as a result, some important issues in the field have not been adequately addressed. I start with the work of E. F. Lindquist, who exemplified the balance that is now wanting. Lindquist was arguably the…
Descriptors: Educational Assessment, Evaluation Methods, Achievement Tests, Educational History
Peer reviewed Peer reviewed
Direct linkDirect link
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Kitto, Kirsty; Hicks, Ben; Shum, Simon Buckingham – British Journal of Educational Technology, 2023
An extraordinary amount of data is becoming available in educational settings, collected from a wide range of Educational Technology tools and services. This creates opportunities for using methods from Artificial Intelligence and Learning Analytics (LA) to improve learning and the environments in which it occurs. And yet, analytics results…
Descriptors: Causal Models, Learning Analytics, Educational Theories, Artificial Intelligence
Kenneth A. Frank; Qinyun Lin; Ran Xu; Spiro Maroulis; Anna Mueller – Grantee Submission, 2023
Social scientists seeking to inform policy or public action must carefully consider how to identify effects and express inferences because actions based on invalid inferences will not yield the intended results. Recognizing the complexities and uncertainties of social science, we seek to inform inevitable debates about causal inferences by…
Descriptors: Social Sciences, Research Methodology, Statistical Inference, Robustness (Statistics)
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14