Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 13 |
| Since 2007 (last 20 years) | 23 |
Descriptor
| Equations (Mathematics) | 45 |
| Statistical Inference | 45 |
| Mathematical Models | 16 |
| Computation | 14 |
| Simulation | 10 |
| Bayesian Statistics | 9 |
| Error of Measurement | 9 |
| Item Response Theory | 9 |
| Regression (Statistics) | 9 |
| Comparative Analysis | 8 |
| Models | 8 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 32 |
| Reports - Evaluative | 22 |
| Reports - Research | 22 |
| Speeches/Meeting Papers | 4 |
| Dissertations/Theses -… | 1 |
| Numerical/Quantitative Data | 1 |
Education Level
| High Schools | 2 |
| Secondary Education | 1 |
Audience
| Researchers | 1 |
Location
| Kansas | 1 |
| Massachusetts | 1 |
| Zimbabwe | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Center for Epidemiologic… | 1 |
What Works Clearinghouse Rating
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Tianci Liu; Chun Wang; Gongjun Xu – Grantee Submission, 2022
Multidimensional Item Response Theory (MIRT) is widely used in educational and psychological assessment and evaluation. With the increasing size of modern assessment data, many existing estimation methods become computationally demanding and hence they are not scalable to big data, especially for the multidimensional three-parameter and…
Descriptors: Item Response Theory, Computation, Monte Carlo Methods, Algorithms
Eli Ben-Michael; Avi Feller; Erin Hartman – Grantee Submission, 2023
In the November 2016 U.S. presidential election, many state level public opinion polls, particularly in the Upper Midwest, incorrectly predicted the winning candidate. One leading explanation for this polling miss is that the precipitous decline in traditional polling response rates led to greater reliance on statistical methods to adjust for the…
Descriptors: Public Opinion, National Surveys, Elections, Political Campaigns
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2021
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes and other covariates as closely as possible. A critical feature of the original…
Descriptors: Evaluation Methods, Comparative Analysis, Regression (Statistics), Computation
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Trafimow, David; MacDonald, Justin A. – Educational and Psychological Measurement, 2017
Typically, in education and psychology research, the investigator collects data and subsequently performs descriptive and inferential statistics. For example, a researcher might compute group means and use the null hypothesis significance testing procedure to draw conclusions about the populations from which the groups were drawn. We propose an…
Descriptors: Statistical Inference, Statistics, Data Collection, Equations (Mathematics)
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Bloom, Howard S.; Spybrook, Jessaca – Journal of Research on Educational Effectiveness, 2017
Multisite trials, which are being used with increasing frequency in education and evaluation research, provide an exciting opportunity for learning about how the effects of interventions or programs are distributed across sites. In particular, these studies can produce rigorous estimates of a cross-site mean effect of program assignment…
Descriptors: Program Effectiveness, Program Evaluation, Sample Size, Evaluation Research
Kim, Yongnam; Steiner, Peter – Educational Psychologist, 2016
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Descriptors: Quasiexperimental Design, Causal Models, Statistical Inference, Randomized Controlled Trials
Mazza, Angelo; Punzo, Antonio – Sociological Methods & Research, 2015
The dissimilarity index of Duncan and Duncan is widely used in a broad range of contexts to assess the overall extent of segregation in the allocation of two groups in two or more units. Its sensitivity to random allocation implies an upward bias with respect to the unknown amount of systematic segregation. In this article, following a multinomial…
Descriptors: Statistical Bias, Error of Measurement, Error Correction, Mathematical Logic
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling

Peer reviewed
Direct link
