NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A.; Neugebauer, Sabina R. – Educational and Psychological Measurement, 2020
Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Parsley, Kathryn M.; Daigle, Bernie J.; Sabel, Jaime L. – CBE - Life Sciences Education, 2022
Plant awareness disparity (PAD, formerly plant blindness) is the idea that students tend not to notice or appreciate the plants in their environment. This phenomenon often leads to naïve points of view, such as plants are not important or do not do anything for humans. There are four components of PAD: attitude (not liking plants), attention (not…
Descriptors: Test Construction, Test Validity, Test Reliability, Plants (Botany)
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Larwin, Karen; Harvey, Milton – Practical Assessment, Research & Evaluation, 2012
Establishing model parsimony is an important component of structural equation modeling (SEM). Unfortunately, little attention has been given to developing systematic procedures to accomplish this goal. To this end, the current study introduces an innovative application of the jackknife approach first presented in Rensvold and Cheung (1999). Unlike…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Measures (Individuals)
Peer reviewed Peer reviewed
Shi, Jian-Qing; Lee, Sik-Yum – Psychometrika, 1997
Explores posterior analysis in estimating factor score in a confirmatory factor analysis model with polytomous, censored or truncated data, and studies the accuracy of Bayesian estimates through simulation. Results support these Bayesian estimates for statistical inference. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Factor Structure, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Styron, Ronald A., Jr.; Maulding, Wanda S.; Hull, Portia – College Student Journal, 2006
This manuscript addresses the question of who makes the better university professor.--Is it the person with experience in the field as a K-12 administrator or the one directly out of college with only in-depth knowledge of educational administration theory? The study was performed at a southern university using graduate educational leadership and…
Descriptors: Instructional Leadership, Elementary Secondary Education, Educational Administration, Student Attitudes