Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 33 |
Descriptor
Goodness of Fit | 37 |
Statistical Inference | 37 |
Computation | 13 |
Models | 13 |
Statistical Analysis | 11 |
Item Response Theory | 10 |
Bayesian Statistics | 9 |
Error of Measurement | 9 |
Structural Equation Models | 9 |
Maximum Likelihood Statistics | 8 |
Simulation | 7 |
More ▼ |
Source
Author
Cai, Li | 3 |
Abad, Francisco J. | 1 |
Ames, Allison | 1 |
Ames, Allison J. | 1 |
Baek, Eunkyeng | 1 |
Batchelder, William H. | 1 |
Beechey, Timothy | 1 |
Bonifay, Wes | 1 |
Browne, Michael W. | 1 |
Cai, Tianji | 1 |
Chen, Jinsong | 1 |
More ▼ |
Publication Type
Journal Articles | 30 |
Reports - Research | 21 |
Reports - Descriptive | 8 |
Reports - Evaluative | 6 |
Dissertations/Theses -… | 2 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 4 |
Secondary Education | 4 |
Junior High Schools | 3 |
Postsecondary Education | 3 |
Middle Schools | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 12 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Audience
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 2 |
National Longitudinal Study… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Vidushi Adlakha; Eric Kuo – Physical Review Physics Education Research, 2023
Recent critiques of physics education research (PER) studies have revoiced the critical issues when drawing causal inferences from observational data where no intervention is present. In response to a call for a "causal reasoning primer" in PER, this paper discusses some of the fundamental issues in statistical causal inference. In…
Descriptors: Physics, Science Education, Statistical Inference, Causal Models
Köhler, Carmen; Robitzsch, Alexander; Hartig, Johannes – Journal of Educational and Behavioral Statistics, 2020
Testing whether items fit the assumptions of an item response theory model is an important step in evaluating a test. In the literature, numerous item fit statistics exist, many of which show severe limitations. The current study investigates the root mean squared deviation (RMSD) item fit statistic, which is used for evaluating item fit in…
Descriptors: Test Items, Goodness of Fit, Statistics, Bias
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Bonifay, Wes; Depaoli, Sarah – Grantee Submission, 2021
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard good-ness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Models, Measurement Techniques, Item Response Theory
Fergusson, Anna; Pfannkuch, Maxine – Journal of Statistics Education, 2020
Informally testing the fit of a probability distribution model is educationally a desirable precursor to formal methods for senior secondary school students. Limited research on how to teach such an informal approach, lack of statistically sound criteria to enable drawing of conclusions, as well as New Zealand assessment requirements led to this…
Descriptors: Foreign Countries, Statistics Education, Probability, Goodness of Fit
Devlieger, Ines; Talloen, Wouter; Rosseel, Yves – Educational and Psychological Measurement, 2019
Factor score regression (FSR) is a popular alternative for structural equation modeling. Naively applying FSR induces bias for the estimators of the regression coefficients. Croon proposed a method to correct for this bias. Next to estimating effects without bias, interest often lies in inference of regression coefficients or in the fit of the…
Descriptors: Regression (Statistics), Computation, Goodness of Fit, Statistical Inference
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Ames, Allison J. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian item response theory (IRT) modeling stages include (a) specifying the IRT likelihood model, (b) specifying the parameter prior distributions, (c) obtaining the posterior distribution, and (d) making appropriate inferences. The latter stage, and the focus of this research, includes model criticism. Choice of priors with the posterior…
Descriptors: Bayesian Statistics, Item Response Theory, Statistical Inference, Prediction
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit
Guerra-Peña, Kiero; Steinley, Douglas – Educational and Psychological Measurement, 2016
Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…
Descriptors: Growth Models, Bayesian Statistics, Sampling, Statistical Inference
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement