NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Cognitive Abilities Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 37 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hans Humenberger – Teaching Statistics: An International Journal for Teachers, 2025
In the last years special "ovals" appear increasingly often in diagrams and applets for discussing crucial items of statistical inference (when dealing with confidence intervals for an unknown probability p; approximation of the binomial distribution by the normal distribution; especially in German literature, see e.g. [Meyer,…
Descriptors: Computer Oriented Programs, Prediction, Intervals, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bonett, Douglas G. – Journal of Educational and Behavioral Statistics, 2022
The limitations of Cohen's ? are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical…
Descriptors: Statistical Inference, Statistical Data, Interrater Reliability, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Hansen, Spencer; Rice, Kenneth – Research Synthesis Methods, 2022
Meta-analysis of proportions is conceptually simple: Faced with a binary outcome in multiple studies, we seek inference on some overall proportion of successes/failures. Under common effect models, exact inference has long been available, but is not when we more realistically allow for heterogeneity of the proportions. Instead a wide range of…
Descriptors: Meta Analysis, Effect Size, Statistical Inference, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Brannick, Michael T.; French, Kimberly A.; Rothstein, Hannah R.; Kiselica, Andrew M.; Apostoloski, Nenad – Research Synthesis Methods, 2021
Tolerance intervals provide a bracket intended to contain a percentage (e.g., 80%) of a population distribution given sample estimates of the mean and variance. In random-effects meta-analysis, tolerance intervals should contain researcher-specified proportions of underlying population effect sizes. Using Monte Carlo simulation, we investigated…
Descriptors: Meta Analysis, Credibility, Intervals, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2019
The analysis of covariance (ANCOVA) is a useful statistical procedure that incorporates covariate features into the adjustment of treatment effects. The consequences of omitted prognostic covariates on the statistical inferences of ANCOVA are well documented in the literature. However, the corresponding influence on sample-size calculations for…
Descriptors: Sample Size, Statistical Analysis, Computation, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Howington, Eric B. – Teaching Statistics: An International Journal for Teachers, 2017
Few introductory statistics courses consider statistical inference for the median. This article argues in favour of adding a confidence interval for the median to the first statistics course. Several methods suitable for introductory statistics students are identified and briefly reviewed.
Descriptors: Statistics, Intervals, Statistical Inference, Introductory Courses
Xinran Li; Peng Ding – Grantee Submission, 2018
Frequentists' inference often delivers point estimators associated with confidence intervals or sets for parameters of interest. Constructing the confidence intervals or sets requires understanding the sampling distributions of the point estimators, which, in many but not all cases, are related to asymptotic Normal distributions ensured by central…
Descriptors: Correlation, Intervals, Sampling, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dogan, C. Deha – Eurasian Journal of Educational Research, 2017
Background: Most of the studies in academic journals use p values to represent statistical significance. However, this is not a good indicator of practical significance. Although confidence intervals provide information about the precision of point estimation, they are, unfortunately, rarely used. The infrequent use of confidence intervals might…
Descriptors: Sampling, Statistical Inference, Periodicals, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Swire, Briony; Ecker, Ullrich K. H.; Lewandowsky, Stephan – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
People frequently continue to use inaccurate information in their reasoning even after a credible retraction has been presented. This phenomenon is often referred to as the continued influence effect of misinformation. The repetition of the original misconception within a retraction could contribute to this phenomenon, as it could inadvertently…
Descriptors: Information Utilization, Familiarity, Error Correction, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Pantelis, Peter C.; Kennedy, Daniel P. – Autism: The International Journal of Research and Practice, 2016
Two-phase designs in epidemiological studies of autism prevalence introduce methodological complications that can severely limit the precision of resulting estimates. If the assumptions used to derive the prevalence estimate are invalid or if the uncertainty surrounding these assumptions is not properly accounted for in the statistical inference…
Descriptors: Foreign Countries, Pervasive Developmental Disorders, Autism, Incidence
Peer reviewed Peer reviewed
Direct linkDirect link
Ruscio, John; Gera, Benjamin Lee – Multivariate Behavioral Research, 2013
Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…
Descriptors: Psychological Studies, Gender Differences, Researchers, Test Results
Peer reviewed Peer reviewed
Direct linkDirect link
Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew – Applied Psychological Measurement, 2012
Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…
Descriptors: Intervals, Monte Carlo Methods, Computation, Sampling
Previous Page | Next Page »
Pages: 1  |  2  |  3