NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers3
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rosa W. Runhardt – Sociological Methods & Research, 2024
This article uses the interventionist theory of causation, a counterfactual theory taken from philosophy of science, to strengthen causal analysis in process tracing research. Causal claims from process tracing are re-expressed in terms of so-called hypothetical interventions, and concrete evidential tests are proposed which are shown to…
Descriptors: Causal Models, Statistical Inference, Intervention, Investigations
Peer reviewed Peer reviewed
Direct linkDirect link
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Vidushi Adlakha; Eric Kuo – Physical Review Physics Education Research, 2023
Recent critiques of physics education research (PER) studies have revoiced the critical issues when drawing causal inferences from observational data where no intervention is present. In response to a call for a "causal reasoning primer" in PER, this paper discusses some of the fundamental issues in statistical causal inference. In…
Descriptors: Physics, Science Education, Statistical Inference, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Nathan McJames; Andrew Parnell; Ann O'Shea – Educational Review, 2025
Teacher shortages and attrition are problems of international concern. One of the most frequent reasons for teachers leaving the profession is a lack of job satisfaction. Accordingly, in this study we have adopted a causal inference machine learning approach to identify practical interventions for improving overall levels of job satisfaction. We…
Descriptors: Job Satisfaction, Teacher Surveys, Administrator Surveys, Faculty Mobility
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
K. L. Anglin; A. Krishnamachari; V. Wong – Grantee Submission, 2020
This article reviews important statistical methods for estimating the impact of interventions on outcomes in education settings, particularly programs that are implemented in field, rather than laboratory, settings. We begin by describing the causal inference challenge for evaluating program effects. Then four research designs are discussed that…
Descriptors: Causal Models, Statistical Inference, Intervention, Program Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Li-Ting; Andrade, Alejandro; Hanauer, Matthew James – AERA Online Paper Repository, 2017
Single-case design is a repeated-measures research approach for the study of the effect of an intervention, and its importance is increasingly being recognized in education and psychology. We propose a Bayesian approach for estimating intervention effects in SCD. A Bayesian inference does not rely on large sample theories and thus is particularly…
Descriptors: Bayesian Statistics, Research Design, Case Studies, Intervention
Panganiban, Jonathan Luke – ProQuest LLC, 2019
Much research in autism spectrum disorders (ASD) has focused on the development of efficacious interventions to address the core deficits of ASD. However, the heterogeneous nature of ASD complicates the development of such interventions. With great heterogeneity in the expression of ASD's core deficits, it is unlikely that there is a one size fits…
Descriptors: Autism, Pervasive Developmental Disorders, Expressive Language, Interpersonal Communication
Peer reviewed Peer reviewed
Direct linkDirect link
de Vetten, Arjen; Schoonenboom, Judith; Keijzer, Ronald; van Oers, Bert – Educational Studies in Mathematics, 2018
Teachers who engage primary school students in informal statistical inference (ISI) must themselves have good content knowledge of ISI (ISI-CK). However, little is known about how college education for pre-service teachers can contribute to the development of their ISI-CK. To address this shortcoming, we used a case study to investigate ISI-CK…
Descriptors: Statistical Inference, Elementary School Students, Knowledge Level, Preservice Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Harris, Heather; Horst, S. Jeanne – Practical Assessment, Research & Evaluation, 2016
Propensity score matching techniques are becoming increasingly common as they afford applied practitioners the ability to account for systematic bias related to self-selection. However, "best practices" for implementing these techniques in applied settings is scattered throughout the literature. The current article aims to provide a…
Descriptors: Statistical Analysis, Statistical Bias, Computation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath – Journal of Speech, Language, and Hearing Research, 2019
Purpose: Speech-evoked neurophysiological responses are often collected to answer clinically and theoretically driven questions concerning speech and language processing. Here, we highlight the practical application of machine learning (ML)-based approaches to analyzing speech-evoked neurophysiological responses. Method: Two categories of ML-based…
Descriptors: Speech Language Pathology, Intervention, Communication Problems, Speech Impairments
Peer reviewed Peer reviewed
Direct linkDirect link
Bloom, Howard S.; Spybrook, Jessaca – Journal of Research on Educational Effectiveness, 2017
Multisite trials, which are being used with increasing frequency in education and evaluation research, provide an exciting opportunity for learning about how the effects of interventions or programs are distributed across sites. In particular, these studies can produce rigorous estimates of a cross-site mean effect of program assignment…
Descriptors: Program Effectiveness, Program Evaluation, Sample Size, Evaluation Research
Previous Page | Next Page ยป
Pages: 1  |  2  |  3