Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 3 |
Descriptor
Bayesian Statistics | 3 |
Learning Processes | 3 |
Probability | 3 |
Statistical Inference | 3 |
Markov Processes | 2 |
Models | 2 |
Monte Carlo Methods | 2 |
Animals | 1 |
Classical Conditioning | 1 |
Classification | 1 |
Cluster Grouping | 1 |
More ▼ |
Author
Blei, David M. | 1 |
Gershman, Samuel J. | 1 |
Griffiths, Thomas L. | 1 |
Kalish, Michael L. | 1 |
Niv, Yael | 1 |
Rutstein, Daisy Wise | 1 |
Publication Type
Journal Articles | 2 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rutstein, Daisy Wise – ProQuest LLC, 2012
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Descriptors: Bayesian Statistics, Learning Processes, Robustness (Statistics), Statistical Inference
Gershman, Samuel J.; Blei, David M.; Niv, Yael – Psychological Review, 2010
A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction in conditioning experiments, using the idea of "state classification" to categorize new observations into states. In the current article, the authors propose an interpretation of this idea in terms of normative statistical inference. They…
Descriptors: Conditioning, Statistical Inference, Inferences, Bayesian Statistics
Griffiths, Thomas L.; Kalish, Michael L. – Cognitive Science, 2007
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
Descriptors: Probability, Diachronic Linguistics, Statistical Inference, Language Universals