Publication Date
In 2025 | 2 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 20 |
Since 2016 (last 10 years) | 29 |
Since 2006 (last 20 years) | 45 |
Descriptor
Prediction | 50 |
Statistical Inference | 50 |
Bayesian Statistics | 17 |
Computation | 12 |
Sampling | 12 |
Models | 11 |
Probability | 11 |
Foreign Countries | 8 |
Regression (Statistics) | 7 |
Data Analysis | 6 |
Equations (Mathematics) | 6 |
More ▼ |
Source
Author
Griffiths, Thomas L. | 4 |
David Kaplan | 3 |
Kjorte Harra | 3 |
Kazak, Sibel | 2 |
Makar, Katie | 2 |
Tenenbaum, Joshua B. | 2 |
Adam Sales | 1 |
Allmond, Sue | 1 |
Ames, Allison J. | 1 |
Avi Feller | 1 |
Baek, Eunkyeng | 1 |
More ▼ |
Publication Type
Journal Articles | 39 |
Reports - Research | 27 |
Reports - Evaluative | 13 |
Reports - Descriptive | 5 |
Dissertations/Theses -… | 3 |
Opinion Papers | 2 |
Guides - Classroom - Teacher | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Practitioners | 2 |
Researchers | 2 |
Administrators | 1 |
Teachers | 1 |
Location
Turkey | 2 |
Australia | 1 |
Germany | 1 |
Israel | 1 |
Italy | 1 |
Kansas | 1 |
Portugal | 1 |
Switzerland | 1 |
United Kingdom (England) | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Teaching and Learning… | 2 |
ACT Assessment | 1 |
Armed Services Vocational… | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Hans Humenberger – Teaching Statistics: An International Journal for Teachers, 2025
In the last years special "ovals" appear increasingly often in diagrams and applets for discussing crucial items of statistical inference (when dealing with confidence intervals for an unknown probability p; approximation of the binomial distribution by the normal distribution; especially in German literature, see e.g. [Meyer,…
Descriptors: Computer Oriented Programs, Prediction, Intervals, Statistical Inference
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Regan Mozer; Luke Miratrix – Grantee Submission, 2024
For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by trained human raters. This process, the current standard, is both time-consuming and limiting: even the largest human coding efforts are typically constrained to…
Descriptors: Artificial Intelligence, Coding, Efficiency, Statistical Inference
Yanli Xie – ProQuest LLC, 2022
The purpose of this dissertation is to develop principles and strategies for and identify limitations of multisite cluster randomized trials in the context of partially and fully nested designs. In the first study, I develop principles of estimation, sampling variability, and inference for studies that leverage multisite designs within the context…
Descriptors: Randomized Controlled Trials, Research Design, Computation, Sampling
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Kitto, Kirsty; Hicks, Ben; Shum, Simon Buckingham – British Journal of Educational Technology, 2023
An extraordinary amount of data is becoming available in educational settings, collected from a wide range of Educational Technology tools and services. This creates opportunities for using methods from Artificial Intelligence and Learning Analytics (LA) to improve learning and the environments in which it occurs. And yet, analytics results…
Descriptors: Causal Models, Learning Analytics, Educational Theories, Artificial Intelligence
Estrella, Soledad; Méndez-Reina, Maritza; Vidal-Szabó, Pedro – Statistics Education Research Journal, 2023
Recent research suggests the benefits of supporting a progressive understanding of concepts of inference prior to the teaching of procedures and formal calculations through the study of informal statistical inference (ISI). To contribute to the growing knowledge about the early learning and teaching of statistics, particularly regarding the…
Descriptors: Grade 3, Elementary School Students, Learning Trajectories, Statistics Education
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Eli Ben-Michael; Avi Feller; Erin Hartman – Grantee Submission, 2023
In the November 2016 U.S. presidential election, many state level public opinion polls, particularly in the Upper Midwest, incorrectly predicted the winning candidate. One leading explanation for this polling miss is that the precipitous decline in traditional polling response rates led to greater reliance on statistical methods to adjust for the…
Descriptors: Public Opinion, National Surveys, Elections, Political Campaigns
Kaplan, David; Huang, Mingya – Large-scale Assessments in Education, 2021
Of critical importance to education policy is monitoring trends in education outcomes over time. In the United States, the National Assessment of Educational Progress (NAEP) has provided long-term trend data since 1970; at the state/jurisdiction level, NAEP has provided long-term trend data since 1996. In addition to the national NAEP, all 50…
Descriptors: Educational Policy, Educational Trends, National Competency Tests, Bayesian Statistics
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2021
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes and other covariates as closely as possible. A critical feature of the original…
Descriptors: Evaluation Methods, Comparative Analysis, Regression (Statistics), Computation
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research