NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
SAT (College Admission Test)1
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bernard J. Koch; Tim Sainburg; Pablo Geraldo Bastías; Song Jiang; Yizhou Sun; Jacob G. Foster – Sociological Methods & Research, 2025
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to…
Descriptors: Artificial Intelligence, Statistical Inference, Causal Models, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Abell, Peter; Engel, Ofer – Sociological Methods & Research, 2021
The article explores the role that subjective evidence of causality and associated counterfactuals and counterpotentials might play in the social sciences where comparative cases are scarce. This scarcity rules out statistical inference based upon frequencies and usually invites in-depth ethnographic studies. Thus, if causality is to be preserved…
Descriptors: Social Science Research, Influences, Ethnography, Bayesian Statistics
Blake H. Heller; Carly D. Robinson – Annenberg Institute for School Reform at Brown University, 2024
Quasi-experimental methods are a cornerstone of applied social science, providing critical answers to causal questions that inform policy and practice. Although open science principles have influenced experimental research norms across the social sciences, these practices are rarely implemented in quasi-experimental research. In this paper, we…
Descriptors: Social Science Research, Research Methodology, Quasiexperimental Design, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Chattoe-Brown, Edmund – International Journal of Social Research Methodology, 2021
This article demonstrates how a technique called Agent-Based Modelling can address a significant challenge for effective interdisciplinarity. Different disciplines and research methods make divergent assertions about what a satisfactory explanation requires. However, without a unified framework analysing the implications of these differences…
Descriptors: Interdisciplinary Approach, Models, Research Methodology, Statistical Analysis
Peer reviewed Peer reviewed
Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Wilhelmina van Dijk; Cynthia U. Norris; Sara A. Hart – Grantee Submission, 2022
Randomized control trials are considered the pinnacle for causal inference. In many cases, however, randomization of participants in social work research studies is not feasible or ethical. This paper introduces the co-twin control design study as an alternative quasi-experimental design to provide evidence of causal mechanisms when randomization…
Descriptors: Twins, Research Design, Randomized Controlled Trials, Quasiexperimental Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu, Chong Ho; Lee, Hyun Seo; Lara, Emily; Gan, Siyan – Practical Assessment, Research & Evaluation, 2018
Big data analytics are prevalent in fields like business, engineering, public health, and the physical sciences, but social scientists are slower than their peers in other fields in adopting this new methodology. One major reason for this is that traditional statistical procedures are typically not suitable for the analysis of large and complex…
Descriptors: Data Analysis, Social Sciences, Social Science Research, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Nicholson, James; Ridgway, Jim – Statistics Education Research Journal, 2017
White and Gorard make important and relevant criticisms of some of the methods commonly used in social science research, but go further by criticising the logical basis for inferential statistical tests. This paper comments briefly on matters we broadly agree on with them and more fully on matters where we disagree. We agree that too little…
Descriptors: Statistical Inference, Statistics, Teaching Methods, Criticism
Peer reviewed Peer reviewed
Direct linkDirect link
White, Patrick; Gorard, Stephen – Statistics Education Research Journal, 2017
Recent concerns about a shortage of capacity for statistical and numerical analysis skills among social science students and researchers have prompted a range of initiatives aiming to improve teaching in this area. However, these projects have rarely re-evaluated the content of what is taught to students and have instead focussed primarily on…
Descriptors: Statistical Inference, Statistics, Teaching Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Ulriksen, Marianne S.; Dadalauri, Nina – International Journal of Social Research Methodology, 2016
Single case studies can provide vital contributions to theory-testing in social science studies. Particularly, by applying the process-tracing method, case studies can test theoretical frameworks through a rigorous research design that ensures substantial empirical leverage. While most scholarly contributions on process-tracing focus on either…
Descriptors: Case Studies, Hypothesis Testing, Social Science Research, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Neale, Dave – Oxford Review of Education, 2015
Recently, Stephen Gorard has outlined strong objections to the use of significance testing in social research. He has argued, first, that as the samples used in social research are almost always non-random it is not possible to use inferential statistical techniques and, second, that even if a truly random sample were achieved, the logic behind…
Descriptors: Statistical Significance, Statistical Analysis, Sampling, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Barry; Glaesser, Judith – International Journal of Social Research Methodology, 2016
Ragin's Qualitative Comparative Analysis (QCA) is often used with small to medium samples where the researcher has good case knowledge. Employing it to analyse large survey datasets, without in-depth case knowledge, raises new challenges. We present ways of addressing these challenges. We first report a single QCA result from a configurational…
Descriptors: Social Science Research, Robustness (Statistics), Educational Sociology, Comparative Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3