NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Does not meet standards4
Showing 31 to 45 of 1,110 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alrik Thiem; Lusine Mkrtchyan – Field Methods, 2024
Qualitative comparative analysis (QCA) is an empirical research method that has gained some popularity in the social sciences. At the same time, the literature has long been convinced that QCA is prone to committing causal fallacies when confronted with non-causal data. More specifically, beyond a certain case-to-factor ratio, the method is…
Descriptors: Qualitative Research, Comparative Analysis, Research Methodology, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Xinhe Wang; Ben B. Hansen – Society for Research on Educational Effectiveness, 2024
Background: Clustered randomized controlled trials are commonly used to evaluate the effectiveness of treatments. Frequently, stratified or paired designs are adopted in practice. Fogarty (2018) studied variance estimators for stratified and not clustered experiments and Schochet et. al. (2022) studied that for stratified, clustered RCTs with…
Descriptors: Causal Models, Randomized Controlled Trials, Computation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Castillo; Lindsay Dusard – Society for Research on Educational Effectiveness, 2024
Background: The emergence of causal research in education was almost strictly quantitative twenty years ago, however, that landscape has changed considerably. The number of intervention studies fielded and completed annually has increased substantially, and the quality of the evaluations is much more robust, including paying much greater attention…
Descriptors: Randomized Controlled Trials, Educational Research, Equal Education, Educational Policy
Guanglei Hong; Fan Yang; Xu Qin – Grantee Submission, 2023
In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of post-treatment confounding are abundant. In the presence of treatment-by-mediator interactions, past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due…
Descriptors: Causal Models, Mediation Theory, Research Problems, Statistical Inference
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Hansen, Spencer; Rice, Kenneth – Research Synthesis Methods, 2022
Meta-analysis of proportions is conceptually simple: Faced with a binary outcome in multiple studies, we seek inference on some overall proportion of successes/failures. Under common effect models, exact inference has long been available, but is not when we more realistically allow for heterogeneity of the proportions. Instead a wide range of…
Descriptors: Meta Analysis, Effect Size, Statistical Inference, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Diego Cortes; Dirk Hastedt; Sabine Meinck – Large-scale Assessments in Education, 2025
This paper informs users of data collected in international large-scale assessments (ILSA), by presenting argumentsunderlining the importance of considering two design features employed in these studies. We examine a commonmisconception stating that the uncertainty arising from the assessment design is negligible compared with that arisingfrom the…
Descriptors: Sampling, Research Design, Educational Assessment, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Panchompoo Wisittanawat; Richard Lehrer – Cognition and Instruction, 2024
This report characterizes forms of dialogic support that a sixth-grade teacher generated during whole-class and small-group conversations to help students develop a practice of statistical modeling. During four weeks of instruction, students constructed and revised models to account for variability and uncertainty across a variety of random…
Descriptors: Statistics Education, Mathematical Models, Grade 6, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Duane Knudson – Measurement in Physical Education and Exercise Science, 2025
Small sample sizes contribute to several problems in research and knowledge advancement. This conceptual replication study confirmed and extended the inflation of type II errors and confidence intervals in correlation analyses of small sample sizes common in kinesiology/exercise science. Current population data (N = 18, 230, & 464) on four…
Descriptors: Kinesiology, Exercise, Biomechanics, Movement Education
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  74