Publication Date
In 2025 | 16 |
Since 2024 | 73 |
Since 2021 (last 5 years) | 204 |
Since 2016 (last 10 years) | 470 |
Since 2006 (last 20 years) | 879 |
Descriptor
Statistical Inference | 1110 |
Statistical Analysis | 284 |
Sampling | 224 |
Foreign Countries | 188 |
Computation | 183 |
Statistics | 180 |
Bayesian Statistics | 169 |
Probability | 169 |
Hypothesis Testing | 133 |
Models | 127 |
Regression (Statistics) | 127 |
More ▼ |
Source
Author
Griffiths, Thomas L. | 10 |
Bakker, Arthur | 8 |
Ben-Zvi, Dani | 8 |
Gelman, Andrew | 8 |
Makar, Katie | 8 |
Mislevy, Robert J. | 7 |
Pfannkuch, Maxine | 7 |
Wagenmakers, Eric-Jan | 7 |
Tenenbaum, Joshua B. | 6 |
Thompson, Bruce | 6 |
Yuan, Ke-Hai | 6 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 35 |
Teachers | 31 |
Practitioners | 15 |
Administrators | 3 |
Students | 3 |
Media Staff | 1 |
Parents | 1 |
Policymakers | 1 |
Location
Australia | 23 |
Turkey | 13 |
California | 9 |
Canada | 8 |
Malaysia | 8 |
Netherlands | 8 |
Texas | 8 |
United States | 8 |
United Kingdom (England) | 7 |
Indonesia | 6 |
New Zealand | 6 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 3 |
Aid to Families with… | 1 |
Head Start | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Does not meet standards | 4 |
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Marianne van Dijke-Droogers; Paul Drijvers; Arthur Bakker – Mathematics Education Research Journal, 2025
In our data-driven society, it is essential for students to become statistically literate. A core domain within Statistical Literacy is Statistical Inference, the ability to draw inferences from sample data. Acquiring and applying inferences is difficult for students and, therefore, usually not included in the pre-10th-grade curriculum. However,…
Descriptors: Statistical Inference, Learning Trajectories, Grade 9, High School Students
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Kitto, Kirsty; Hicks, Ben; Shum, Simon Buckingham – British Journal of Educational Technology, 2023
An extraordinary amount of data is becoming available in educational settings, collected from a wide range of Educational Technology tools and services. This creates opportunities for using methods from Artificial Intelligence and Learning Analytics (LA) to improve learning and the environments in which it occurs. And yet, analytics results…
Descriptors: Causal Models, Learning Analytics, Educational Theories, Artificial Intelligence
Thomas Cook; Mansi Wadhwa; Jingwen Zheng – Society for Research on Educational Effectiveness, 2023
Context: A perennial problem in applied statistics is the inability to justify strong claims about cause-and-effect relationships without full knowledge of the mechanism determining selection into treatment. Few research designs other than the well-implemented random assignment study meet this requirement. Researchers have proposed partial…
Descriptors: Observation, Research Design, Causal Models, Computation
Kenneth A. Frank; Qinyun Lin; Ran Xu; Spiro Maroulis; Anna Mueller – Grantee Submission, 2023
Social scientists seeking to inform policy or public action must carefully consider how to identify effects and express inferences because actions based on invalid inferences will not yield the intended results. Recognizing the complexities and uncertainties of social science, we seek to inform inevitable debates about causal inferences by…
Descriptors: Social Sciences, Research Methodology, Statistical Inference, Robustness (Statistics)
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Tim Erickson – Australian Mathematics Education Journal, 2023
This short article continues the exploration of the Common Online Data Analysis Platform (CODAP) and statistics begun in the previous article "Statistical Investigations and CODAP, Part 1: EDA." In Part 2, the author discusses the teaching of statistical inference focusing on activities for the senior secondary years. In particular, the…
Descriptors: Computer Software, Statistics Education, Statistical Inference, Secondary Education
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
Luke W. Miratrix – Grantee Submission, 2022
We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting…
Descriptors: Causal Models, Case Studies, Quasiexperimental Design, Monte Carlo Methods
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Wendy Chan; Larry Vernon Hedges – Journal of Educational and Behavioral Statistics, 2022
Multisite field experiments using the (generalized) randomized block design that assign treatments to individuals within sites are common in education and the social sciences. Under this design, there are two possible estimands of interest and they differ based on whether sites or blocks have fixed or random effects. When the average treatment…
Descriptors: Research Design, Educational Research, Statistical Analysis, Statistical Inference
Mortaza Jamshidian; Parsa Jamshidian – Journal of Statistics and Data Science Education, 2024
Using software to teach statistical inference in introductory courses opens the door for methods and practices that are more conceptually appealing to students. With an increasing number of fields requiring competency in statistics including data science, natural and social sciences, public health and more, it is crucial that we as instructors…
Descriptors: Computer Software, Computer Assisted Instruction, Teaching Methods, Statistics Education