Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 19 |
Descriptor
Neurological Organization | 23 |
Stimuli | 23 |
Animals | 16 |
Brain | 14 |
Conditioning | 14 |
Fear | 9 |
Classical Conditioning | 7 |
Memory | 7 |
Brain Hemisphere Functions | 6 |
Behavioral Science Research | 5 |
Neurological Impairments | 5 |
More ▼ |
Author
Publication Type
Journal Articles | 23 |
Reports - Research | 19 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yokose, Jun; Marks, William D.; Yamamoto, Naoki; Ogawa, Sachie K.; Kitamura, Takashi – Learning & Memory, 2021
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial…
Descriptors: Associative Learning, Brain Hemisphere Functions, Neurological Organization, Stimuli
Bryan B. Gore; Marta E. Soden; Larry S. Zweifel – Learning & Memory, 2014
Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…
Descriptors: Fear, Conditioning, Neurological Organization, Measurement Equipment
Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K. – Learning & Memory, 2013
The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…
Descriptors: Brain, Fear, Conditioning, Neurological Organization
Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda – Learning & Memory, 2014
Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…
Descriptors: Conditioning, Stimuli, Cues, Rewards
Nasser, Helen M.; McNally, Gavan P. – Learning & Memory, 2013
We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of…
Descriptors: Animals, Fear, Motivation, Classical Conditioning
Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro – Learning & Memory, 2013
Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…
Descriptors: Neurological Organization, Brain, Pain, Stimuli
Brown, Kevin L.; Freeman, John H. – Learning & Memory, 2014
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…
Descriptors: Animals, Conditioning, Neurological Organization, Associative Learning
Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee – Learning & Memory, 2014
In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…
Descriptors: Conditioning, Brain Hemisphere Functions, Sensory Experience, Cues
Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T. – Learning & Memory, 2014
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…
Descriptors: Classical Conditioning, Neurological Organization, Animals, Behavioral Science Research
Steinmetz, Adam B.; Freeman, John H. – Learning & Memory, 2010
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…
Descriptors: Stimuli, Conditioning, Eye Movements, Brain Hemisphere Functions
Garcia-DeLaTorre, Paola; Rodriguez-Ortiz, Carlos J.; Arreguin-Martinez, Jose L.; Cruz-Castaneda, Paulina; Bermudez-Rattoni, Federico – Learning & Memory, 2009
Reconsolidation has been described as a process where a consolidated memory returns to a labile state when retrieved. Growing evidence suggests that reconsolidation is, in fact, a destabilization/stabilization process that incorporates updated information to a previously consolidated memory. We used the conditioned taste aversion (CTA) task in…
Descriptors: Memory, Perception, Conditioning, Animals
Bradfield, Laura A.; McNally, Gavan P. – Learning & Memory, 2010
We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…
Descriptors: Stimuli, Classical Conditioning, Fear, Child Development
Paz, Rony; Bauer, Elizabeth P.; Pare, Denis – Learning & Memory, 2008
Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony…
Descriptors: Memory, Neurological Organization, Learning, Stimuli
Lee, Inah; Kim, Jangjin – Learning & Memory, 2010
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in…
Descriptors: Animals, Infants, Brain, Task Analysis
Weeks, Andrew C. W.; Connor, Steve; Hinchcliff, Richard; LeBoutillier, Janelle C.; Thompson, Richard F.; Petit, Ted L. – Learning & Memory, 2007
Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a…
Descriptors: Stimuli, Classical Conditioning, Eye Movements, Animals
Previous Page | Next Page ยป
Pages: 1 | 2