Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 10 |
Descriptor
Author
Zhang, Zhiyong | 10 |
Yuan, Ke-Hai | 3 |
Cain, Meghan K. | 1 |
Grimm, Kevin | 1 |
Hamagami, Fumiaki | 1 |
Hamaker, Ellen L. | 1 |
Jin, Ick Hoon | 1 |
Lai, Keke | 1 |
Liu, Haiyan | 1 |
Lu, Zhenqiu | 1 |
Mai, Yujiao | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Location
Maryland | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 2 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Liu, Haiyan; Jin, Ick Hoon; Zhang, Zhiyong – Grantee Submission, 2018
Psychologists are interested in whether friends and couples share similar personalities or not. However, no statistical models are readily available to test the association between personalities and social relations in the literature. In this study, we develop a statistical model for analyzing social network data with the latent personality traits…
Descriptors: Structural Equation Models, Social Networks, Personality Traits, Statistical Analysis
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Zhang, Zhiyong; Wang, Lijuan – Psychometrika, 2013
Despite wide applications of both mediation models and missing data techniques, formal discussion of mediation analysis with missing data is still rare. We introduce and compare four approaches to dealing with missing data in mediation analysis including list wise deletion, pairwise deletion, multiple imputation (MI), and a two-stage maximum…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Simulation, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…
Descriptors: Structural Equation Models, Statistical Analysis, Robustness (Statistics), Computer Software
Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele – Multivariate Behavioral Research, 2013
We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…
Descriptors: Structural Equation Models, Change, Individual Differences, Mathematics Skills
Yuan, Ke-Hai; Zhang, Zhiyong – Psychometrika, 2012
The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package "rsem" to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables…
Descriptors: Structural Equation Models, Tests, Federal Aid, Psychometrics
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics