NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Educational and Psychological…96
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 96 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
W. Holmes Finch – Educational and Psychological Measurement, 2024
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent…
Descriptors: Models, Regression (Statistics), Structural Equation Models, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Fisk, Charles L.; Harring, Jeffrey R.; Shen, Zuchao; Leite, Walter; Suen, King Yiu; Marcoulides, Katerina M. – Educational and Psychological Measurement, 2023
Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted…
Descriptors: Structural Equation Models, Algorithms, Simulation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrich Schroeders; Florian Scharf; Gabriel Olaru – Educational and Psychological Measurement, 2024
Metaheuristics are optimization algorithms that efficiently solve a variety of complex combinatorial problems. In psychological research, metaheuristics have been applied in short-scale construction and model specification search. In the present study, we propose a bee swarm optimization (BSO) algorithm to explore the structure underlying a…
Descriptors: Structural Equation Models, Heuristics, Algorithms, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Calvocoressi, Lisa – Educational and Psychological Measurement, 2021
A procedure for evaluating the average R-squared index for a given set of observed variables in an exploratory factor analysis model is discussed. The method can be used as an effective aid in the process of model choice with respect to the number of factors underlying the interrelationships among studied measures. The approach is developed within…
Descriptors: Factor Analysis, Structural Equation Models, Statistical Analysis, Selection
Petscher, Yaacov; Schatschneider, Christopher – Educational and Psychological Measurement, 2019
Complex data structures are ubiquitous in psychological research, especially in educational settings. In the context of randomized controlled trials, students are nested in classrooms but may be cross-classified by other units, such as small groups. Furthermore, in many cases only some students may be nested within a unit while other students may…
Descriptors: Structural Equation Models, Causal Models, Randomized Controlled Trials, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Sim, Mikyung; Kim, Su-Young; Suh, Youngsuk – Educational and Psychological Measurement, 2022
Mediation models have been widely used in many disciplines to better understand the underlying processes between independent and dependent variables. Despite their popularity and importance, the appropriate sample sizes for estimating those models are not well known. Although several approaches (such as Monte Carlo methods) exist, applied…
Descriptors: Sample Size, Statistical Analysis, Predictor Variables, Path Analysis
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Aytürk, Ezgi; Cham, Heining; Jennings, Patricia A.; Brown, Joshua L. – Educational and Psychological Measurement, 2020
Methods to handle ordered-categorical indicators in latent variable interactions have been developed, yet they have not been widely applied. This article compares the performance of two popular latent variable interaction modeling approaches in handling ordered-categorical indicators: unconstrained product indicator (UPI) and latent moderated…
Descriptors: Evaluation Methods, Grade 3, Grade 4, Grade 5
Peer reviewed Peer reviewed
Direct linkDirect link
Son, Sookyoung; Hong, Sehee – Educational and Psychological Measurement, 2021
The purpose of this two-part study is to evaluate methods for multiple group analysis when the comparison group is at the within level with multilevel data, using a multilevel factor mixture model (ML FMM) and a multilevel multiple-indicators multiple-causes (ML MIMIC) model. The performance of these methods was evaluated integrally by a series of…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Structural Equation Models, Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7