Descriptor
Source
Structural Equation Modeling | 11 |
Author
Bandalos, Deborah L. | 2 |
Chin, Wynne W. | 1 |
Coenders, Germa | 1 |
Dudgeon, Paul | 1 |
Enders, Craig K. | 1 |
Fan, Xitao | 1 |
Fouladi, Rachel T. | 1 |
Gerbing, David W. | 1 |
Hamilton, Janet G. | 1 |
Jackson, Dennis L. | 1 |
Lee, Sik-Yum | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Evaluative | 7 |
Reports - Research | 2 |
Book/Product Reviews | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Coenders, Germa; Saris, Willem E.; Satorra, Albert – Structural Equation Modeling, 1997
A Monte Carlo study is reported that shows the comparative performance of alternative approaches under deviations from their respective assumptions in the case of structural equation models with latent variables with attention restricted to point estimates of model parameters. The conditional polychoric correlations method is shown most robust…
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Structural Equation Models

Enders, Craig K.; Bandalos, Deborah L. – Structural Equation Modeling, 2001
Used Monte Carlo simulation to examine the performance of four missing data methods in structural equation models: (1)full information maximum likelihood (FIML); (2) listwise deletion; (3) pairwise deletion; and (4) similar response pattern imputation. Results show that FIML estimation is superior across all conditions of the design. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Simulation, Structural Equation Models

Oczkowski, Edward – Structural Equation Modeling, 2002
Proposes the use of nonnested tests for the two stage least squares (2SLS) estimator of latent variable models to discriminate between scales. Compares the finite sample performance of these tests to structural equation modeling information-based criteria. Presents practical recommendations based on the Monte Carlo analysis. (SLD)
Descriptors: Estimation (Mathematics), Least Squares Statistics, Monte Carlo Methods, Structural Equation Models

Song, Xin-Yuan; Lee, Sik-Yum; Zhu, Hong-Tu – Structural Equation Modeling, 2001
Studied the maximum likelihood estimation of unknown parameters in a general LISREL-type model with mixed polytomous and continuous data through Monte Carlo simulation. Proposes a model selection procedure for obtaining good models for the underlying substantive theory and discusses the effectiveness of the proposed model. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Selection, Simulation

Gerbing, David W.; Hamilton, Janet G. – Structural Equation Modeling, 1996
A Monte Carlo study evaluated the effectiveness of different factor analysis extraction and rotation methods for identifying the known population multiple-indicator measurement model. Results demonstrate that exploratory factor analysis can contribute to a useful heuristic strategy for model specification prior to cross-validation with…
Descriptors: Heuristics, Mathematical Models, Measurement Techniques, Monte Carlo Methods

Chin, Wynne W. – Structural Equation Modeling, 1996
The SEPATH structural equation modeling (SEM) software is a new module in the latest release of STATISTICA (version 5.0) for Windows 3.1 and Windows 95. SEPATH is a program that provides a comprehensive set of functions for the SEM modeling. The interface and the Monte Carlo capability are strong features. (SLD)
Descriptors: Computer Interfaces, Computer Software, Data Analysis, Estimation (Mathematics)

Fan, Xitao; Wang, Lin; Thompson, Bruce – Structural Equation Modeling, 1999
A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size

Jackson, Dennis L. – Structural Equation Modeling, 2001
Investigated the assumption that determining an adequate sample size in structural equation modeling can be aided by considering the number of parameters to be estimated. Findings from maximum likelihood confirmatory factor analysis support previous research on the effect of sample size, measured variable reliability, and the number of measured…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods, Reliability

Fouladi, Rachel T. – Structural Equation Modeling, 2000
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Descriptors: Analysis of Covariance, Correlation, Monte Carlo Methods, Multivariate Analysis
Dudgeon, Paul – Structural Equation Modeling, 2004
This article considers the implications for other noncentrality parameter-based statistics from Steiger's (1998) multiple sample adjustment to the root mean square error of approximation (RMSEA) measure. When a structural equation model is fitted simultaneously in more than 1 sample, it is shown that the calculation of the noncentrality parameter…
Descriptors: Statistical Analysis, Monte Carlo Methods, Structural Equation Models, Error of Measurement

Bandalos, Deborah L. – Structural Equation Modeling, 1997
Monte Carlo methods were used to study the accuracy and utility of estimators of overall error and error due to approximation in structural equation modeling. Effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter also was examined. Choosing among competing models is…
Descriptors: Comparative Analysis, Error of Measurement, Estimation (Mathematics), Monte Carlo Methods