Publication Date
In 2025 | 2 |
Since 2024 | 17 |
Since 2021 (last 5 years) | 30 |
Since 2016 (last 10 years) | 48 |
Since 2006 (last 20 years) | 79 |
Descriptor
Bayesian Statistics | 87 |
Structural Equation Models | 87 |
Computation | 25 |
Goodness of Fit | 25 |
Comparative Analysis | 20 |
Monte Carlo Methods | 20 |
Factor Analysis | 18 |
Simulation | 18 |
Maximum Likelihood Statistics | 17 |
Statistical Analysis | 14 |
Evaluation Methods | 13 |
More ▼ |
Source
Author
Lee, Sik-Yum | 16 |
Song, Xin-Yuan | 12 |
Lijuan Wang | 4 |
Haiyan Liu | 3 |
James Ohisei Uanhoro | 3 |
Levy, Roy | 3 |
Liang, Xinya | 3 |
Xia, Ye-Mao | 3 |
Asparouhov, Tihomir | 2 |
Ben Kelcey | 2 |
Boomsma, Anne | 2 |
More ▼ |
Publication Type
Journal Articles | 75 |
Reports - Research | 58 |
Reports - Evaluative | 15 |
Reports - Descriptive | 9 |
Opinion Papers | 3 |
Dissertations/Theses -… | 2 |
Speeches/Meeting Papers | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 4 |
Junior High Schools | 3 |
Middle Schools | 3 |
Secondary Education | 3 |
Grade 8 | 2 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
More ▼ |
Audience
Location
Belgium | 2 |
Iran | 2 |
Australia | 1 |
China | 1 |
Georgia | 1 |
Germany (Berlin) | 1 |
Netherlands | 1 |
Philippines | 1 |
Saudi Arabia | 1 |
Texas | 1 |
United Kingdom | 1 |
More ▼ |
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
McCluskey, Sydne – ProQuest LLC, 2023
Rater comparison analysis is commonly necessary in the social sciences. Conventional approaches to the problem generally focus on calculation of agreement statistics, which provide useful but incomplete information about rater agreement. Importantly, one-number agreement statistics give no indication regarding the nature of disagreements, nor do…
Descriptors: Bayesian Statistics, Structural Equation Models, Interrater Reliability, Beliefs
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)
Timothy R. Konold; Elizabeth A. Sanders – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality…
Descriptors: Structural Equation Models, Reliability, Bayesian Statistics, Goodness of Fit
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Yuan Fang; Lijuan Wang – Grantee Submission, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Research Problems, Longitudinal Studies, Simulation
Mauricio Garnier-Villarreal; Terrence D. Jorgensen – Grantee Submission, 2024
Model evaluation is a crucial step in SEM, consisting of two broad areas: global and local fit, where local fit indices are use to modify the original model. In the modification process, the modification index (MI) and the standardized expected parameter change (SEPC) are used to select the parameters that can be added to improve the fit. The…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Indexes
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Sarah Depaoli; Sonja D. Winter; Haiyan Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We extended current knowledge by examining the performance of several Bayesian model fit and comparison indices through a simulation study using the confirmatory factor analysis. Our goal was to determine whether commonly implemented Bayesian indices can detect specification errors. Specifically, we wanted to uncover any differences in detecting…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Testing, Evaluation Utilization
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Ziqian Xu – Grantee Submission, 2022
With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at…
Descriptors: Research Problems, Bayesian Statistics, Structural Equation Models, Data Analysis
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement