Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 15 |
Descriptor
Comparative Analysis | 19 |
Monte Carlo Methods | 19 |
Structural Equation Models | 19 |
Statistical Analysis | 12 |
Error of Measurement | 10 |
Computation | 5 |
Correlation | 5 |
Maximum Likelihood Statistics | 5 |
Factor Analysis | 4 |
Goodness of Fit | 4 |
Regression (Statistics) | 4 |
More ▼ |
Source
Author
Algina, James | 1 |
Aydin, Burak | 1 |
Bai, Haiyan | 1 |
Bandalos, Deborah L. | 1 |
Bentler, Peter M. | 1 |
Bowles, Ryan P. | 1 |
Bray, Bethany C. | 1 |
Cheevatanarak, Suchittra | 1 |
Clark, D. Angus | 1 |
Corlu, M. Sencer | 1 |
Cribbie, Robert A. | 1 |
More ▼ |
Publication Type
Journal Articles | 18 |
Reports - Research | 11 |
Reports - Evaluative | 8 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Ke-Hai Yuan; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and also do not have predefined metrics. Structural equation modeling (SEM) is commonly used to analyze such data. This article discuss issues in latent-variable modeling as compared to regression analysis with composite-scores. Via logical reasoning and analytical results…
Descriptors: Error of Measurement, Measurement Techniques, Social Science Research, Behavioral Science Research
Clark, D. Angus; Bowles, Ryan P. – Grantee Submission, 2018
In exploratory item factor analysis (IFA), researchers may use model fit statistics and commonly invoked fit thresholds to help determine the dimensionality of an assessment. However, these indices and thresholds may mislead as they were developed in a confirmatory framework for models with continuous, not categorical, indicators. The present…
Descriptors: Factor Analysis, Goodness of Fit, Factor Structure, Monte Carlo Methods
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao – International Journal of Research & Method in Education, 2016
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
Descriptors: Sampling, Structural Equation Models, Statistical Inference, Comparative Analysis
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Smith, Carrie E.; Cribbie, Robert A. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Analysis, Comparative Analysis
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…
Descriptors: Structural Equation Models, Monte Carlo Methods, Comparative Analysis, Statistical Analysis
McGrath, Robert E.; Walters, Glenn D. – Psychological Methods, 2012
Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Computation
Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen – Psychological Methods, 2012
Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…
Descriptors: Structural Equation Models, Geometric Concepts, Computation, Comparative Analysis
Corlu, M. Sencer – International Review of Education, 2014
There are two mainstream curricula for international school students at the junior high level: the International Baccalaureate (IB) Middle Years Programme (MYP) and the Cambridge International General Certificate of Secondary Education (IGCSE). The former was developed in the mid-1990s and is currently being relaunched in a 21st-century approach.…
Descriptors: Advanced Placement Programs, Junior High School Students, International Schools, Educational Change
Kim, Doyoung; De Ayala, R. J.; Ferdous, Abdullah A.; Nering, Michael L. – Applied Psychological Measurement, 2011
To realize the benefits of item response theory (IRT), one must have model-data fit. One facet of a model-data fit investigation involves assessing the tenability of the conditional item independence (CII) assumption. In this Monte Carlo study, the comparative performance of 10 indices for identifying conditional item dependence is assessed. The…
Descriptors: Item Response Theory, Monte Carlo Methods, Error of Measurement, Statistical Analysis
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Incomplete nonnormal data are common occurrences in applied research. Although these 2 problems are often dealt with separately by methodologists, they often cooccur. Very little has been written about statistics appropriate for evaluating models with such data. This article extends several existing statistics for complete nonnormal data to…
Descriptors: Sample Size, Statistics, Data, Monte Carlo Methods
Zhang, Wei – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…
Descriptors: Monte Carlo Methods, Statistical Analysis, Comparative Analysis, Structural Equation Models
Schumacker, Randall E.; Cheevatanarak, Suchittra – 2000
Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…
Descriptors: Chi Square, Comparative Analysis, Estimation (Mathematics), Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1 | 2