Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 34 |
Descriptor
Data | 34 |
Structural Equation Models | 34 |
Statistical Analysis | 12 |
Computation | 11 |
Maximum Likelihood Statistics | 11 |
Goodness of Fit | 6 |
Monte Carlo Methods | 5 |
Predictor Variables | 5 |
Data Analysis | 4 |
Elementary School Teachers | 4 |
Foreign Countries | 4 |
More ▼ |
Source
Author
Savalei, Victoria | 5 |
Van Petegem, Peter | 3 |
Vanhoof, Jan | 3 |
Yuan, Ke-Hai | 3 |
Bentler, Peter M. | 2 |
Enders, Craig K. | 2 |
Preacher, Kristopher J. | 2 |
Van Gasse, Roos | 2 |
Vanlommel, Kristin | 2 |
Adams, Catherine | 1 |
Airola, Denise T. | 1 |
More ▼ |
Publication Type
Journal Articles | 32 |
Reports - Research | 24 |
Reports - Descriptive | 5 |
Reports - Evaluative | 3 |
Dissertations/Theses -… | 2 |
Education Level
Elementary Education | 4 |
Secondary Education | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Postsecondary Education | 1 |
Primary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
Stages of Concern… | 1 |
Strengths and Difficulties… | 1 |
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Cutumisu, Maria; Adams, Catherine; Glanfield, Florence; Yuen, Connie; Lu, Chang – IEEE Transactions on Education, 2022
The growing interest of educational researchers in computational thinking (CT) has led to an expanding literature on assessments of CT skills and attitudes. However, few studies have examined whether CT attitudes influence CT skills. The present study examines the relationship between CT attitudes and CT skills for preservice teachers (PSTs). The…
Descriptors: Structural Equation Models, Preservice Teachers, Thinking Skills, Computation
Gniewosz, Burkhard; Gniewosz, Gabriela – International Journal of Behavioral Development, 2018
The present article aims to show how to model longitudinal change in cohort sequential data applying latent true change models using Mplus' multi-group approach. The underlying modeling ideas are described and explained in this article. As an example, change in internalizing problem behaviors between the age of 8 and 13 years is modeled and…
Descriptors: Models, Data, Behavior Problems, Children
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit
Van Gasse, Roos; Vanhoof, Jan; Van Petegem, Peter – Educational Studies, 2018
The contribution of data use in schools has been proven via visible changes in policy and practice in schools (instrumental effects), changes in practitioners learning or cognition (conceptual effects) and changes in opinions or attitudes regarding teaching or policy-making (symbolic effects). Nevertheless, limited research is available on the…
Descriptors: Foreign Countries, Elementary School Teachers, Secondary School Teachers, Teacher Attitudes
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Van Gasse, Roos; Vanlommel, Kristin; Vanhoof, Jan; Van Petegem, Peter – School Effectiveness and School Improvement, 2017
Research considers collaboration to be a significant factor in terms of how teachers use data to improve their practice. Nevertheless, the effects of teacher collaboration with regard to teachers' individual data use has remained largely underexplored. Moreover, little attention has been paid to the interplay between collaboration and the personal…
Descriptors: Foreign Countries, Teacher Collaboration, Elementary School Teachers, Secondary School Teachers
Elrod, Terry; Haubl, Gerald; Tipps, Steven W. – Psychometrika, 2012
Recent research reflects a growing awareness of the value of using structural equation models to analyze repeated measures data. However, such data, particularly in the presence of covariates, often lead to models that either fit the data poorly, are exceedingly general and hard to interpret, or are specified in a manner that is highly data…
Descriptors: Structural Equation Models, Preferences, Data, Statistical Analysis
Finch, W. Holmes; French, Brian F. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The purpose of this simulation study was to assess the performance of latent variable models that take into account the complex sampling mechanism that often underlies data used in educational, psychological, and other social science research. Analyses were conducted using the multiple indicator multiple cause (MIMIC) model, which is a flexible…
Descriptors: Causal Models, Computation, Data, Sampling
Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models
Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning – Journal of Educational and Behavioral Statistics, 2012
The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…
Descriptors: Structural Equation Models, Goodness of Fit, Geometric Concepts, Algebra
Han, Kyung T.; Guo, Fanmin – Practical Assessment, Research & Evaluation, 2014
The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) computerized adaptive testing…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Data, Computer Assisted Testing
Mair, Patrick; Satorra, Albert; Bentler, Peter M. – Multivariate Behavioral Research, 2012
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Descriptors: Structural Equation Models, Data, Monte Carlo Methods, Probability
Preacher, Kristopher J. – Multivariate Behavioral Research, 2011
Strategies for modeling mediation effects in multilevel data have proliferated over the past decade, keeping pace with the demands of applied research. Approaches for testing mediation hypotheses with 2-level clustered data were first proposed using multilevel modeling (MLM) and subsequently using multilevel structural equation modeling (MSEM) to…
Descriptors: Structural Equation Models, Data, Multivariate Analysis
Savalei, Victoria; Rhemtulla, Mijke – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Fraction of missing information [lambda][subscript j] is a useful measure of the impact of missing data on the quality of estimation of a particular parameter. This measure can be computed for all parameters in the model, and it communicates the relative loss of efficiency in the estimation of a particular parameter due to missing data. It has…
Descriptors: Computation, Structural Equation Models, Maximum Likelihood Statistics, Data