NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
Mediation analysis plays an important role in understanding causal processes in social and behavioral sciences. While path analysis with composite scores was criticized to yield biased parameter estimates when variables contain measurement errors, recent literature has pointed out that the population values of parameters of latent-variable models…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Comparative Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes; French, Brian F. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The purpose of this simulation study was to assess the performance of latent variable models that take into account the complex sampling mechanism that often underlies data used in educational, psychological, and other social science research. Analyses were conducted using the multiple indicator multiple cause (MIMIC) model, which is a flexible…
Descriptors: Causal Models, Computation, Data, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Landsheer, J. A. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…
Descriptors: Structural Equation Models, Causal Models, Evaluation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Bollen, Kenneth A.; Davis, Walter R. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
We discuss the identification, estimation, and testing of structural equation models that have causal indicators. We first provide 2 rules of identification that are particularly helpful in models with causal indicators--the 2C emitted paths rule and the exogenous X rule. We demonstrate how these rules can help us distinguish identified from…
Descriptors: Structural Equation Models, Testing, Identification, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Freedman, David A.; Berk, Richard A. – Evaluation Review, 2008
Regressions can be weighted by propensity scores in order to reduce bias. However, weighting is likely to increase random error in the estimates, and to bias the estimated standard errors downward, even when selection mechanisms are well understood. Moreover, in some cases, weighting will increase the bias in estimated causal parameters. If…
Descriptors: Causal Models, Weighted Scores, Error of Measurement, Case Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation
Peer reviewed Peer reviewed
Pohlmann, John T. – Mid-Western Educational Researcher, 1993
Nonlinear relationships and latent variable assumptions can lead to serious specification errors in structural models. A quadratic relationship, described by a linear structural model with a latent variable, is shown to have less predictive validity than a simple manifest variable regression model. Advocates the use of simpler preliminary…
Descriptors: Causal Models, Error of Measurement, Predictor Variables, Research Methodology
Peer reviewed Peer reviewed
Schumacker, Randall E. – Mid-Western Educational Researcher, 1993
Structural equation models merge multiple regression, path analysis, and factor analysis techniques into a single data analytic framework. Measurement models are developed to define latent variables, and structural equations are then established among the latent variables. Explains the development of these models. (KS)
Descriptors: Causal Models, Data Analysis, Error of Measurement, Factor Analysis
Peer reviewed Peer reviewed
Neale, Michael C.; And Others – Multivariate Behavioral Research, 1994
In studies of relatives, conventional multiple regression may not be appropriate because observations are not independent. Obtaining estimates of regression coefficients and correct standard errors from these populations through a structural equation modeling framework is discussed and illustrated with data from twins. (SLD)
Descriptors: Analysis of Covariance, Causal Models, Data Collection, Error of Measurement