NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 273 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy R. Konold; Elizabeth A. Sanders – Measurement: Interdisciplinary Research and Perspectives, 2024
Compared to traditional confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM) has been shown to result in less structural parameter bias when cross-loadings (CLs) are present. However, when model fit is reasonable for CFA (over ESEM), CFA should be preferred on the basis of parsimony. Using simulations, the current…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Naoto Yamashita – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Matrix decomposition structural equation modeling (MDSEM) is introduced as a novel approach in structural equation modeling, contrasting with traditional structural equation modeling (SEM). MDSEM approximates the data matrix using a model generated by the hypothetical model and addresses limitations faced by conventional SEM procedures by…
Descriptors: Structural Equation Models, Factor Structure, Robustness (Statistics), Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Sergio Dominguez-Lara; Mario A. Trógolo; Rodrigo Moreta-Herrera; Diego Vaca-Quintana; Manuel Fernández-Arata; Ana Paredes-Proaño – Journal of Psychoeducational Assessment, 2025
Academic engagement plays a crucial role in students' learning and performance. One of the most popular measures for assessing this construct is the Utrecht Work Engagement Scale for Students (UWES-S), which is based on a tridimensional conceptualization consisting of dedication, vigor, and absorption. However, prior research on its factor…
Descriptors: Learner Engagement, College Students, Foreign Countries, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xijuan Zhang; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A full structural equation model (SEM) typically consists of both a measurement model (describing relationships between latent variables and observed scale items) and a structural model (describing relationships among latent variables). However, often researchers are primarily interested in testing hypotheses related to the structural model while…
Descriptors: Structural Equation Models, Goodness of Fit, Robustness (Statistics), Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Aitana González-Ortiz de Zárate; Helena Roig-Ester; Paulina E. Robalino Guerra; Anja Garone; Carla Quesada-Pallarès – International Journal of Training and Development, 2025
Transfer beliefs are understudied in the training transfer field, whereas structural equation modelling (SEM) has been a widely used technique to study transfer models. New methodologies are needed to study training transfer and network analysis (NA) has emerged as a new approach that provides a visual representation of a given network. We…
Descriptors: Trainees, Student Attitudes, Beliefs, Transfer of Training
Peer reviewed Peer reviewed
Direct linkDirect link
Khalid ALMamari – International Journal of Testing, 2024
The Multidimensional Personality Questionnaire (MPQ) measures a wide range of personality traits associated with affect and temperament. However, the lengthy administration time may have hindered its widespread use in personality research. The National Survey of Midlife Development in the United States (MIDUS) has adapted a short version of the…
Descriptors: Personality Measures, Questionnaires, Construct Validity, Test Reliability
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Sz-Yan; Kang, Hyeon-Ah; Jensen, Jody L. – Measurement in Physical Education and Exercise Science, 2023
The objective was to verify the construct validity and test-retest reliability of the Test of Advanced Movement Skills (TAMS) with an innovative dual-outcome scoring system. Three statistical approaches--confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM), and item response theory analysis (IRT)--were applied to the…
Descriptors: Construct Validity, Pretests Posttests, Psychomotor Skills, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christophe Dierendonck – International Education Studies, 2024
This study is aimed at validating the French version of the Effort-Reward Imbalance Questionnaire for Teachers. The instrument was pretested before being administered in a large-scale study with elementary school teachers. Dimensionality of the instrument was examined using the bifactor exploratory structural equation modeling (ESEM) framework.…
Descriptors: Teacher Surveys, Questionnaires, Teacher Persistence, Rewards
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Blaine G. Robbins – Sociological Methods & Research, 2024
The Stranger Face Trust scale (SFT) and Imaginary Stranger Trust scale (IST) are two new self-report measures of generalized trust that assess trust in strangers--both real and imaginary--across four trust domains. Prior research has established the reliability and validity of SFT and IST, but a number of measurement validation tests remain.…
Descriptors: Attitude Measures, Trust (Psychology), Stranger Reactions, Pretests Posttests
Peer reviewed Peer reviewed
Direct linkDirect link
Frazier, Thomas W.; Khaliq, Izma; Scullin, Keeley; Uljarevic, Mirko; Shih, Andy; Karpur, Arun – Journal of Autism and Developmental Disorders, 2023
At present, there are no brief, freely-available, informant-report measures that evaluate key challenging behaviors relevant to youth with autism spectrum disorder (ASD) or other developmental disabilities (DD). This paper describes the development, refinement, and initial psychometric evaluation of a new 18-item measure, the Open-Source…
Descriptors: Test Construction, Psychometrics, Behavior Problems, Autism Spectrum Disorders
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  19