Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 10 |
Descriptor
Item Response Theory | 11 |
Monte Carlo Methods | 11 |
Structural Equation Models | 11 |
Factor Analysis | 5 |
Computation | 4 |
Error of Measurement | 4 |
Simulation | 4 |
Statistical Analysis | 4 |
Comparative Analysis | 3 |
Correlation | 3 |
Markov Processes | 3 |
More ▼ |
Source
Structural Equation Modeling:… | 4 |
Applied Psychological… | 2 |
Psychometrika | 2 |
Educational and Psychological… | 1 |
Measurement:… | 1 |
Multivariate Behavioral… | 1 |
Author
Algina, James | 1 |
Aydin, Burak | 1 |
Ben Kelcey | 1 |
De Ayala, R. J. | 1 |
Diep Nguyen | 1 |
Dinno, Alexis | 1 |
Dunson, David B. | 1 |
Edwards, Michael C. | 1 |
Eunsook Kim | 1 |
Ferdous, Abdullah A. | 1 |
Guyon, Hervé | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Research | 6 |
Reports - Evaluative | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Yang, Mingan; Dunson, David B. – Psychometrika, 2010
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Descriptors: Structural Equation Models, Markov Processes, Item Response Theory, Bayesian Statistics
Kim, Doyoung; De Ayala, R. J.; Ferdous, Abdullah A.; Nering, Michael L. – Applied Psychological Measurement, 2011
To realize the benefits of item response theory (IRT), one must have model-data fit. One facet of a model-data fit investigation involves assessing the tenability of the conditional item independence (CII) assumption. In this Monte Carlo study, the comparative performance of 10 indices for identifying conditional item dependence is assessed. The…
Descriptors: Item Response Theory, Monte Carlo Methods, Error of Measurement, Statistical Analysis
Edwards, Michael C. – Psychometrika, 2010
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Descriptors: Structural Equation Models, Markov Processes, Factor Analysis, Item Response Theory
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Hoshino, Takahiro; Shigemasu, Kazuo – Applied Psychological Measurement, 2008
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
Descriptors: Monte Carlo Methods, Markov Processes, Factor Analysis, Computation
Lu, Irene R. R.; Thomas, D. Roland; Zumbo, Bruno D. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article reviews the problems associated with using item response theory (IRT)-based latent variable scores for analytical modeling, discusses the connection between IRT and structural equation modeling (SEM)-based latent regression modeling for discrete data, and compares regression parameter estimates obtained using predicted IRT scores and…
Descriptors: Least Squares Statistics, Item Response Theory, Structural Equation Models, Comparative Analysis