NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Fang; Lijuan Wang – Grantee Submission, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Research Problems, Longitudinal Studies, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Nuria Real-Brioso; Eduardo Estrada; Pablo F. Cáncer – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Accelerated longitudinal designs (ALDs) provide an opportunity to capture long developmental periods in a shorter time framework using a relatively small number of assessments. Prior literature has investigated whether univariate developmental processes can be characterized with data obtained from ALDs. However, many important questions in…
Descriptors: Longitudinal Studies, Psychology, Cognitive Development, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Clark, D. Angus; Nuttall, Amy K.; Bowles, Ryan P. – International Journal of Behavioral Development, 2021
Hybrid autoregressive-latent growth structural equation models for longitudinal data represent a synthesis of the autoregressive and latent growth modeling frameworks. Although these models are conceptually powerful, in practice they may struggle to separate autoregressive and growth-related processes during estimation. This confounding of change…
Descriptors: Structural Equation Models, Longitudinal Studies, Risk, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Coulombe, Patrick; Selig, James P.; Delaney, Harold D. – International Journal of Behavioral Development, 2016
Researchers often collect longitudinal data to model change over time in a phenomenon of interest. Inevitably, there will be some variation across individuals in specific time intervals between assessments. In this simulation study of growth curve modeling, we investigate how ignoring individual differences in time points when modeling change over…
Descriptors: Individual Differences, Longitudinal Studies, Simulation, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Devine, Rory T.; White, Naomi; Ensor, Rosie; Hughes, Claire – Developmental Psychology, 2016
The vast majority of studies on theory of mind (ToM) have focused on the preschool years. Extending the developmental scope of ToM research presents opportunities to both reassess theoretical accounts of ToM and test its predictive utility. The twin aims of this longitudinal study were to examine developmental relations between ToM, executive…
Descriptors: Theory of Mind, Executive Function, Interpersonal Competence, Children
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Weihua; Dempsey, Allison G. – Canadian Journal of School Psychology, 2017
This study examined the mediating role of student school motivation in linking student victimization experiences and academic achievement among a nationally representative sample of students in 10th grade. Structural equation modeling supported that there were significant associations between student victimization and academic achievement for high…
Descriptors: Victims of Crime, Academic Achievement, Grade 10, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Just as growth mixture models are useful with single-phase longitudinal data, multiphase growth mixture models can be used with multiple-phase longitudinal data. One of the practically important issues in single- and multiphase growth mixture models is the sample size requirements for accurate estimation. In a Monte Carlo simulation study, the…
Descriptors: Structural Equation Models, Sample Size, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kwok, Oi-Man; Luo, Wen; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Some nonlinear developmental phenomena can be represented by using a simple piecewise procedure in which 2 linear growth models are joined at a single knot. The major problem of using this piecewise approach is that researchers have to optimally locate the knot (or turning point) where the change in the growth rate occurs. A relatively simple way…
Descriptors: Monte Carlo Methods, Longitudinal Studies, Data, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James; Fan, Xitao – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Growth mixture modeling (GMM) has become a more popular statistical method for modeling population heterogeneity in longitudinal data, but the performance characteristics of GMM enumeration indexes in correctly identifying heterogeneous growth trajectories are largely unknown. Few empirical studies have addressed this issue. This study considered…
Descriptors: Structural Equation Models, Statistical Analysis, Longitudinal Studies, Evaluation Research
Peer reviewed Peer reviewed
Direct linkDirect link
Muthen, Bengt; Asparouhov, Tihomir – Psychological Methods, 2012
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
Descriptors: Factor Analysis, Cognitive Ability, Science Achievement, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…
Descriptors: Structural Equation Models, Probability, Computation, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S. – Multivariate Behavioral Research, 2012
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Descriptors: Monte Carlo Methods, Computation, Robustness (Statistics), Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Tolvanen, Asko; Kiuru, Noona; Leskinen, Esko; Hakkarainen, Kai; Inkinen, Mikko; Lonka, Kirsti; Salmela-Aro, Katariina – International Journal of Behavioral Development, 2011
This study presents a new approach to estimation of a nonlinear growth curve component with fixed and random effects in multilevel modeling. This approach can be used to estimate change in longitudinal data, such as day-of-the-week fluctuation. The motivation of the new approach is to avoid spurious estimates in a random coefficient regression…
Descriptors: Monte Carlo Methods, Computation, Longitudinal Studies, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2