Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 1 |
Descriptor
Causal Models | 2 |
Observation | 2 |
Structural Equation Models | 2 |
Case Studies | 1 |
Error of Measurement | 1 |
Intervention | 1 |
Path Analysis | 1 |
Quasiexperimental Design | 1 |
Selection | 1 |
Simulation | 1 |
Statistical Inference | 1 |
More ▼ |
Source
Evaluation Review | 1 |
Publication Type
Journal Articles | 1 |
Reports - Evaluative | 1 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Freedman, David A.; Berk, Richard A. – Evaluation Review, 2008
Regressions can be weighted by propensity scores in order to reduce bias. However, weighting is likely to increase random error in the estimates, and to bias the estimated standard errors downward, even when selection mechanisms are well understood. Moreover, in some cases, weighting will increase the bias in estimated causal parameters. If…
Descriptors: Causal Models, Weighted Scores, Error of Measurement, Case Studies
Holland, Paul W. – 1988
D. B. Rubin's model for causal inference in experiments and observational studies is enlarged to analyze the problem of "causes causing causes" and is compared to path analysis and recursive structural equations models. A special quasiexperimental design, the encouragement design, is used to give concreteness to the discussion by…
Descriptors: Causal Models, Observation, Path Analysis, Quasiexperimental Design