Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 3 |
Descriptor
Monte Carlo Methods | 3 |
Psychometrics | 3 |
Structural Equation Models | 3 |
Computation | 2 |
Item Response Theory | 2 |
Markov Processes | 2 |
Bayesian Statistics | 1 |
Case Studies | 1 |
Computer Simulation | 1 |
Computer Software | 1 |
Factor Analysis | 1 |
More ▼ |
Publication Type
Journal Articles | 3 |
Reports - Evaluative | 2 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yang, Mingan; Dunson, David B. – Psychometrika, 2010
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Descriptors: Structural Equation Models, Markov Processes, Item Response Theory, Bayesian Statistics
Edwards, Michael C. – Psychometrika, 2010
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Descriptors: Structural Equation Models, Markov Processes, Factor Analysis, Item Response Theory
Hipp, John R.; Bauer, Daniel J. – Psychological Methods, 2006
Finite mixture models are well known to have poorly behaved likelihood functions featuring singularities and multiple optima. Growth mixture models may suffer from fewer of these problems, potentially benefiting from the structure imposed on the estimated class means and covariances by the specified growth model. As demonstrated here, however,…
Descriptors: Monte Carlo Methods, Maximum Likelihood Statistics, Computation, Case Studies