Publication Date
In 2025 | 4 |
Since 2024 | 16 |
Since 2021 (last 5 years) | 30 |
Since 2016 (last 10 years) | 48 |
Since 2006 (last 20 years) | 139 |
Descriptor
Simulation | 182 |
Structural Equation Models | 182 |
Computation | 57 |
Error of Measurement | 45 |
Sample Size | 39 |
Evaluation Methods | 38 |
Monte Carlo Methods | 37 |
Statistical Analysis | 37 |
Goodness of Fit | 34 |
Factor Analysis | 29 |
Maximum Likelihood Statistics | 26 |
More ▼ |
Source
Author
Lee, Sik-Yum | 15 |
Song, Xin-Yuan | 8 |
Dolan, Conor V. | 5 |
Enders, Craig K. | 5 |
Fan, Xitao | 5 |
Raykov, Tenko | 5 |
Hamaker, Ellen L. | 4 |
Harring, Jeffrey R. | 4 |
Leite, Walter L. | 4 |
Marsh, Herbert W. | 4 |
Wen, Zhonglin | 4 |
More ▼ |
Publication Type
Journal Articles | 167 |
Reports - Research | 97 |
Reports - Evaluative | 49 |
Reports - Descriptive | 29 |
Speeches/Meeting Papers | 5 |
Dissertations/Theses -… | 4 |
Opinion Papers | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 5 |
Elementary Education | 4 |
Grade 8 | 3 |
Secondary Education | 3 |
Grade 4 | 2 |
Grade 7 | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Early Childhood Education | 1 |
Elementary Secondary Education | 1 |
Grade 10 | 1 |
More ▼ |
Audience
Researchers | 4 |
Location
Malaysia | 2 |
Brazil | 1 |
Canada | 1 |
European Union | 1 |
Finland | 1 |
Germany | 1 |
Hong Kong | 1 |
Japan | 1 |
Netherlands | 1 |
North Carolina | 1 |
Oregon | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
California Achievement Tests | 1 |
Early Childhood Longitudinal… | 1 |
International Adult Literacy… | 1 |
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Fisk, Charles L.; Harring, Jeffrey R.; Shen, Zuchao; Leite, Walter; Suen, King Yiu; Marcoulides, Katerina M. – Educational and Psychological Measurement, 2023
Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted…
Descriptors: Structural Equation Models, Algorithms, Simulation, Evaluation Methods
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Timothy R. Konold; Elizabeth A. Sanders – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality…
Descriptors: Structural Equation Models, Reliability, Bayesian Statistics, Goodness of Fit
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Yuan Fang; Lijuan Wang – Grantee Submission, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Research Problems, Longitudinal Studies, Simulation
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Liang, Xinya; Cao, Chunhua – Journal of Experimental Education, 2023
To evaluate multidimensional factor structure, a popular method that combines features of confirmatory and exploratory factor analysis is Bayesian structural equation modeling with small-variance normal priors (BSEM-N). This simulation study evaluated BSEM-N as a variable selection and parameter estimation tool in factor analysis with sparse…
Descriptors: Factor Analysis, Bayesian Statistics, Structural Equation Models, Simulation
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals