Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 49 |
Descriptor
Monte Carlo Methods | 53 |
Statistical Analysis | 53 |
Structural Equation Models | 53 |
Computation | 20 |
Sample Size | 20 |
Error of Measurement | 19 |
Comparative Analysis | 12 |
Factor Analysis | 12 |
Goodness of Fit | 12 |
Simulation | 11 |
Statistical Bias | 9 |
More ▼ |
Source
Author
Fan, Xitao | 5 |
Leite, Walter L. | 3 |
Sivo, Stephen A. | 3 |
Bentler, Peter M. | 2 |
Fan, Weihua | 2 |
Harring, Jeffrey R. | 2 |
Weiss, Brandi A. | 2 |
Whittaker, Tiffany A. | 2 |
Aguinis, Herman | 1 |
Aguirre-Urreta, Miguel I. | 1 |
Aiken, Leona S. | 1 |
More ▼ |
Publication Type
Journal Articles | 51 |
Reports - Research | 32 |
Reports - Evaluative | 14 |
Reports - Descriptive | 6 |
Opinion Papers | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Elementary Education | 3 |
Grade 4 | 2 |
Grade 5 | 2 |
Higher Education | 2 |
Grade 1 | 1 |
Grade 10 | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Secondary Education | 1 |
More ▼ |
Audience
Location
Turkey | 1 |
Laws, Policies, & Programs
Aid to Families with… | 1 |
Assessments and Surveys
Motivated Strategies for… | 2 |
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Benjamin Nagengast; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A two-level data set can be structured in either long format (LF) or wide format (WF), and both have corresponding SEM approaches for estimating multilevel models. Intuitively, one might expect these approaches to perform similarly. However, the two data formats yield data matrices with different numbers of columns and rows, and their "cols :…
Descriptors: Data, Monte Carlo Methods, Statistical Distributions, Matrices
Nuria Real-Brioso; Eduardo Estrada; Pablo F. Cáncer – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Accelerated longitudinal designs (ALDs) provide an opportunity to capture long developmental periods in a shorter time framework using a relatively small number of assessments. Prior literature has investigated whether univariate developmental processes can be characterized with data obtained from ALDs. However, many important questions in…
Descriptors: Longitudinal Studies, Psychology, Cognitive Development, Brain Hemisphere Functions
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Orcan, Fatih – International Journal of Assessment Tools in Education, 2021
Monte Carlo simulation is a useful tool for researchers to estimated accuracy of a statistical model. It is usually used for investigating parameter estimation procedure or violation of assumption for some given conditions. To run a simulation either the paid software or open source but free program such as R is need to be used. For that,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Accuracy, Computer Software
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Whittaker, Tiffany A.; Khojasteh, Jam – Journal of Experimental Education, 2017
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…
Descriptors: Statistical Analysis, Monte Carlo Methods, Models, Structural Equation Models
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao – International Journal of Research & Method in Education, 2016
Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…
Descriptors: Sampling, Structural Equation Models, Statistical Inference, Comparative Analysis
Zigler, Christina K.; Ye, Feifei – AERA Online Paper Repository, 2016
Mediation in multi-level data can be examined using conflated multilevel modeling (CMM), unconflated multilevel modeling (UMM), or multilevel structural equation modeling (MSEM). A Monte Carlo study was performed to compare the three methods on bias, type I error, and power in a 1-1-1 model with random slopes. The three methods showed no…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Monte Carlo Methods, Statistical Bias
Coulombe, Patrick; Selig, James P.; Delaney, Harold D. – International Journal of Behavioral Development, 2016
Researchers often collect longitudinal data to model change over time in a phenomenon of interest. Inevitably, there will be some variation across individuals in specific time intervals between assessments. In this simulation study of growth curve modeling, we investigate how ignoring individual differences in time points when modeling change over…
Descriptors: Individual Differences, Longitudinal Studies, Simulation, Change
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M. – Measurement: Interdisciplinary Research and Perspectives, 2016
One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…
Descriptors: Causal Models, Measurement, Research Problems, Structural Equation Models
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Maslowsky, Julie; Jager, Justin; Hemken, Douglas – International Journal of Behavioral Development, 2015
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Descriptors: Structural Equation Models, Computation, Goodness of Fit, Effect Size
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods