Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 2 |
Descriptor
Causal Models | 3 |
Statistical Bias | 3 |
Structural Equation Models | 3 |
Academic Achievement | 1 |
Comparative Analysis | 1 |
Computation | 1 |
Equations (Mathematics) | 1 |
Error of Measurement | 1 |
Faculty Mobility | 1 |
Goodness of Fit | 1 |
Hypothesis Testing | 1 |
More ▼ |
Publication Type
Reports - Research | 2 |
Journal Articles | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals

Robles, Jaime – Structural Equation Modeling, 1996
A theoretical and philosophical revision of the concept of fit in structural equation modeling and its relation to a confirmation bias is developed. The neutral character of fit indexes regarding this issue is argued, concluding that protection against confirmation bias relies on model modification strategy and scientist behavior. (SLD)
Descriptors: Causal Models, Goodness of Fit, Mathematical Models, Statistical Bias