Publication Date
In 2025 | 4 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 28 |
Since 2006 (last 20 years) | 61 |
Descriptor
Statistical Bias | 74 |
Structural Equation Models | 74 |
Error of Measurement | 30 |
Computation | 28 |
Statistical Analysis | 26 |
Monte Carlo Methods | 22 |
Sample Size | 21 |
Simulation | 19 |
Goodness of Fit | 16 |
Correlation | 15 |
Comparative Analysis | 10 |
More ▼ |
Source
Author
Fan, Xitao | 4 |
Konold, Timothy R. | 3 |
Bradshaw, Catherine P. | 2 |
Enders, Craig K. | 2 |
Jak, Suzanne | 2 |
Kush, Joseph M. | 2 |
McNeish, Daniel | 2 |
Nagengast, Benjamin | 2 |
Oort, Frans J. | 2 |
Rhemtulla, Mijke | 2 |
Rosseel, Yves | 2 |
More ▼ |
Publication Type
Journal Articles | 59 |
Reports - Research | 56 |
Reports - Evaluative | 12 |
Speeches/Meeting Papers | 4 |
Dissertations/Theses -… | 3 |
Reports - Descriptive | 3 |
Opinion Papers | 1 |
Education Level
Elementary Education | 7 |
Elementary Secondary Education | 3 |
Grade 5 | 3 |
Grade 1 | 2 |
Grade 4 | 2 |
Grade 7 | 2 |
Intermediate Grades | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Adult Education | 1 |
More ▼ |
Audience
Researchers | 1 |
Location
Cyprus | 2 |
Germany | 2 |
South Korea | 2 |
United Kingdom | 2 |
United States | 2 |
Algeria | 1 |
Australia | 1 |
Brazil | 1 |
Bulgaria | 1 |
Canada | 1 |
Chile | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Center for Epidemiologic… | 1 |
Child Behavior Checklist | 1 |
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
National Longitudinal Survey… | 1 |
Program for International… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Kuan-Yu Jin; Yi-Jhen Wu; Ming Ming Chiu – Measurement: Interdisciplinary Research and Perspectives, 2025
Many education tests and psychological surveys elicit respondent views of similar constructs across scenarios (e.g., story followed by multiple choice questions) by repeating common statements across scales (one-statement-multiple-scale, OSMS). However, a respondent's earlier responses to the common statement can affect later responses to it…
Descriptors: Administrator Surveys, Teacher Surveys, Responses, Test Items
Timothy R. Konold; Elizabeth A. Sanders – Measurement: Interdisciplinary Research and Perspectives, 2024
Compared to traditional confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM) has been shown to result in less structural parameter bias when cross-loadings (CLs) are present. However, when model fit is reasonable for CFA (over ESEM), CFA should be preferred on the basis of parsimony. Using simulations, the current…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Goodness of Fit
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Ayse Busra Ceviren – ProQuest LLC, 2024
Latent change score (LCS) models are a powerful class of structural equation modeling that allows researchers to work with latent difference scores that minimize measurement error. LCS models define change as a function of prior status, which makes it well-suited for modeling developmental theories or processes. In LCS models, like other latent…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Bias, Monte Carlo Methods
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Educational and Psychological Measurement, 2022
Multilevel structural equation modeling (MSEM) allows researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This article…
Descriptors: Structural Equation Models, Factor Structure, Statistical Bias, Error of Measurement
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Hayes, Timothy; Usami, Satoshi – Educational and Psychological Measurement, 2020
Recently, quantitative researchers have shown increased interest in two-step factor score regression (FSR) approaches to structural model estimation. A particularly promising approach proposed by Croon involves first extracting factor scores for each latent factor in a larger model, then correcting the variance-covariance matrix of the factor…
Descriptors: Regression (Statistics), Structural Equation Models, Statistical Bias, Correlation
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Joao M. Souto-Maior; Kenneth A. Shores; Rachel E. Fish – Annenberg Institute for School Reform at Brown University, 2025
Whether selection processes contribute to group-level disparities or merely reflect pre-existing inequalities is an important societal question. In the context of observational data, researchers, concerned about omitted-variable bias, assess selection-contributing inequality via a kitchen-sink approach, comparing selection outcomes of…
Descriptors: Control Groups, Predictor Variables, Correlation, Selection Criteria
Son, Sookyoung; Lee, Hyunjung; Jang, Yoona; Yang, Junyeong; Hong, Sehee – Educational and Psychological Measurement, 2019
The purpose of the present study is to compare nonnormal distributions (i.e., t, skew-normal, skew-t with equal skew and skew-t with unequal skew) in growth mixture models (GMMs) based on diverse conditions of a number of time points, sample sizes, and skewness for intercepts. To carry out this research, two simulation studies were conducted with…
Descriptors: Statistical Distributions, Statistical Analysis, Structural Equation Models, Comparative Analysis