Publication Date
In 2025 | 30 |
Since 2024 | 146 |
Since 2021 (last 5 years) | 592 |
Since 2016 (last 10 years) | 2462 |
Since 2006 (last 20 years) | 6239 |
Descriptor
Structural Equation Models | 7062 |
Foreign Countries | 3004 |
Correlation | 2026 |
Factor Analysis | 1335 |
Statistical Analysis | 1268 |
Questionnaires | 1243 |
Student Attitudes | 1137 |
Predictor Variables | 1114 |
Academic Achievement | 890 |
Longitudinal Studies | 813 |
College Students | 766 |
More ▼ |
Source
Author
Marsh, Herbert W. | 53 |
Raykov, Tenko | 43 |
Teo, Timothy | 43 |
Martin, Andrew J. | 32 |
Lee, Sik-Yum | 30 |
Hancock, Gregory R. | 27 |
Tsai, Chin-Chung | 27 |
Little, Todd D. | 25 |
Bentler, Peter M. | 23 |
Fan, Xitao | 21 |
Yuan, Ke-Hai | 21 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 42 |
Teachers | 23 |
Practitioners | 19 |
Students | 8 |
Administrators | 7 |
Counselors | 7 |
Parents | 3 |
Policymakers | 3 |
Media Staff | 1 |
Location
Turkey | 272 |
Taiwan | 218 |
China | 207 |
Germany | 190 |
Australia | 158 |
South Korea | 129 |
Malaysia | 128 |
Netherlands | 128 |
Hong Kong | 125 |
Spain | 111 |
Norway | 94 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 3 |
Meets WWC Standards with or without Reservations | 3 |
Does not meet standards | 7 |
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Steffen Nestler; Sarah Humberg – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Several variants of the autoregressive structural equation model were suggested over the past years, including, for example, the random intercept autoregressive panel model, the latent curve model with structured residuals, and the STARTS model. The present work shows how to place these models into a mixed-effects model framework and how to…
Descriptors: Structural Equation Models, Computer Software, Models, Measurement
Ruoxuan Li; Lijuan Wang – Grantee Submission, 2024
Causal-formative indicators are often used in social science research. To achieve identification in causal-formative indicator modeling, constraints need to be applied. A conventional method is to constrain the weight of a formative indicator to be 1. The selection of which indicator to have the fixed weight, however, may influence statistical…
Descriptors: Social Science Research, Causal Models, Formative Evaluation, Measurement
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Philipp Sterner; Florian Pargent; Dominik Deffner; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) describes the equivalence of measurement models of a construct across groups or time. When comparing latent means, MI is often stated as a prerequisite of meaningful group comparisons. The most common way to investigate MI is multi-group confirmatory factor analysis (MG-CFA). Although numerous guides exist, a recent…
Descriptors: Structural Equation Models, Causal Models, Measurement, Predictor Variables
Kelvin T. Afolabi; Timothy R. Konold – Practical Assessment, Research & Evaluation, 2024
Exploratory structural equation (ESEM) has received increased attention in the methodological literature as a promising tool for evaluating latent variable measurement models. It overcomes many of the limitations attached to exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), while capitalizing on the benefits of each. Given…
Descriptors: Measurement Techniques, Factor Analysis, Structural Equation Models, Comparative Analysis
W. Holmes Finch – Educational and Psychological Measurement, 2024
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent…
Descriptors: Models, Regression (Statistics), Structural Equation Models, Predictor Variables
Tenko Raykov; Christine DiStefano; Natalja Menold – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal…
Descriptors: Structural Equation Models, Hypothesis Testing, Longitudinal Studies, Research Methodology
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Steffen Erickson – Society for Research on Educational Effectiveness, 2024
Background: Structural Equation Modeling (SEM) is a powerful and broadly utilized statistical framework. Researchers employ these models to dissect relationships into direct, indirect, and total effects (Bollen, 1989). These models unpack the "black box" issues within cause-and-effect studies by examining the underlying theoretical…
Descriptors: Structural Equation Models, Causal Models, Research Methodology, Error of Measurement
Jeroen D. Mulder; Kim Luijken; Bas B. L. Penning de Vries; Ellen L. Hamaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The use of structural equation models for causal inference from panel data is critiqued in the causal inference literature for unnecessarily relying on a large number of parametric assumptions, and alternative methods originating from the potential outcomes framework have been recommended, such as inverse probability weighting (IPW) estimation of…
Descriptors: Structural Equation Models, Time on Task, Time Management, Causal Models
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Joshua Weidlich; Ben Hicks; Hendrik Drachsler – Educational Technology Research and Development, 2024
Researchers tasked with understanding the effects of educational technology innovations face the challenge of providing evidence of causality. Given the complexities of studying learning in authentic contexts interwoven with technological affordances, conducting tightly-controlled randomized experiments is not always feasible nor desirable. Today,…
Descriptors: Educational Research, Educational Technology, Research Design, Structural Equation Models
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models