NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sonsoles Lopez-Pernas; Kamila Misiejuk; Rogers Kaliisa; Mohammed Saqr – IEEE Transactions on Learning Technologies, 2025
Despite the growing use of large language models (LLMs) in educational contexts, there is no evidence on how these can be operationalized by students to generate custom datasets suitable for teaching and learning. Moreover, in the context of network science, little is known about whether LLMs can replicate real-life network properties. This study…
Descriptors: Students, Artificial Intelligence, Man Machine Systems, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Chad C. Tossell; Nathan L. Tenhundfeld; Ali Momen; Katrina Cooley; Ewart J. de Visser – IEEE Transactions on Learning Technologies, 2024
This article examined student experiences before and after an essay writing assignment that required the use of ChatGPT within an undergraduate engineering course. Utilizing a pre-post study design, we gathered data from 24 participants to evaluate ChatGPT's support for both completing and grading an essay assignment, exploring its educational…
Descriptors: Student Attitudes, Computer Software, Artificial Intelligence, Grading
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Ming; Calvo, Rafael A.; Pardo, Abelardo; Martin, Andrew – IEEE Transactions on Learning Technologies, 2015
Engagement is critical to the success of learning activities such as writing, and can be promoted with appropriate feedback. Current engagement measures rely mostly on data collected by observers or self-reported by the participants. In this paper, we describe a learning analytic system called Tracer, which derives behavioral engagement measures…
Descriptors: Student Behavior, Learner Engagement, Writing Assignments, Visualization