NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Students1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 91 to 105 of 148 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joseph-Richard, Paul; Uhomoibhi, James; Jaffrey, Andrew – International Journal of Information and Learning Technology, 2021
Purpose: The aims of this study are to examine affective responses of university students when viewing their own predictive learning analytics (PLA) dashboards, and to analyse how those responses are perceived to affect their self-regulated learning behaviour. Design/methodology/approach: A total of 42 Northern Irish students were shown their own…
Descriptors: Prediction, Learning Analytics, Student Behavior, Affective Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Ibañez, Patricia; Villalonga, Cristina; Nuere, Leire – Technology, Knowledge and Learning, 2020
The main objective of educational institutions is to achieve the integral development of their students in their learning and knowledge construction process. One way to achieve these objectives is the accompaniment and continuous monitoring of students in this process, adapting the methods to their training needs. In online and mixed teaching…
Descriptors: Learning Analytics, Foreign Countries, Educational Environment, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Moubayed, Abdallah; Injadat, Mohammadnoor; Shami, Abdallah; Lutfiyya, Hanan – American Journal of Distance Education, 2020
E-learning platforms and processes face several challenges, among which is the idea of personalizing the e-learning experience and to keep students motivated and engaged. This work is part of a larger study that aims to tackle these two challenges using a variety of machine learning techniques. To that end, this paper proposes the use of k-means…
Descriptors: Learner Engagement, Electronic Learning, Individualized Instruction, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Barragán, Sandra; González, Leandro; Calderón, Gloria – Interchange: A Quarterly Review of Education, 2022
A combination of mathematical and statistical modelling techniques may be used to analyse student dropout behaviour. The aim of this study is to combine Survival Analysis and Analytic Hierarchy Process methodologies when identifying students at-risk of dropping out. This combination favours the institutional understanding of dropout as a dynamic…
Descriptors: Undergraduate Students, Gender Differences, Age Differences, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tempelaar, Dirk – International Association for Development of the Information Society, 2022
E-tutorial learning aids as worked examples and hints have been established as effective instructional formats in problem-solving practices. However, less is known about variations in the use of learning aids across individuals at different stages in their learning process in student-centred learning contexts. This study investigates different…
Descriptors: Learning Analytics, Student Centered Learning, Learning Processes, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kay, Ellie; Bostock, Paul – Student Success, 2023
Providing timely nudges to students has been shown to improve engagement and persistence in tertiary education. However, many studies focus on small-scale pilots rather than institution-wide initiatives. This article assesses the impact of a pan-institution Early Alert System at the University of Canterbury that utilises nudging when students are…
Descriptors: At Risk Students, Learner Engagement, Undergraduate Students, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Educational Technology Research and Development, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods (k-means clustering, data visualization) to…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dooley, Laura; Makasis, Nikolas – Education Sciences, 2020
The flipped classroom has been increasingly employed as a pedagogical strategy in the higher education classroom. This approach commonly involves pre-class learning activities that are delivered online through learning management systems that collect learning analytics data on student access patterns. This study sought to utilize learning…
Descriptors: Student Behavior, Flipped Classroom, Learning Analytics, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Anna Y. Q.; Lu, Owen H. T.; Huang, Jeff C. H.; Yin, C. J.; Yang, Stephen J. H. – Interactive Learning Environments, 2020
In order to enhance the experience of learning, many educators applied learning analytics in a classroom, the major principle of learning analytics is targeting at-risk student and given timely intervention according to the results of student behavior analysis. However, when researchers applied machine learning to train a risk identifying model,…
Descriptors: Academic Achievement, Data Use, Learning Analytics, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
van Leeuwen, Anouschka – Educational Technology Research and Development, 2019
The flipped classroom model is a form of blended learning in which delivery of content occurs with online materials, and face-to-face meetings are used for teacher-guided practice. It is important that teachers stay up to date with the activities students engage in, which may be accomplished with the help of learning analytics (LA). This study…
Descriptors: Teacher Attitudes, Usability, Learning Analytics, Blended Learning
Figueroa, Christina A. – ProQuest LLC, 2019
Online information is not regulated for quality of content or accuracy; therefore, content found online is not always complete, accurate, or unbiased. While media-literacy education exists, educators often only see the final result of students' online research in the form of the assignment or a works cited page. For teachers to address the media…
Descriptors: Student Behavior, Student Research, Media Literacy, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yin, Chengjiu; Hwang, Gwo-Jen – Knowledge Management & E-Learning, 2018
E-books have been introduced to educational institutions in many countries. The use of e-books in traditional classrooms enables the recording of learning logs. Recently, researchers have begun to carry out learning analytics on the learning logs of e-books. However, there has been limited attention devoted to understanding the types of learning…
Descriptors: Electronic Publishing, Learning Analytics, Learning Strategies, Student Behavior
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10