Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Artificial Intelligence | 4 |
Potential Dropouts | 4 |
Student Characteristics | 4 |
Academic Achievement | 3 |
College Students | 3 |
Prediction | 3 |
Accuracy | 2 |
At Risk Students | 2 |
Dropout Characteristics | 2 |
Dropouts | 2 |
Foreign Countries | 2 |
More ▼ |
Author
Agasisti, Tommaso | 1 |
Andrea Zanellati | 1 |
Berrada Fathi, Wafa | 1 |
CannistrĂ , Marta | 1 |
Dongkun Han | 1 |
El Kabtane, Hamada | 1 |
Ieva, Francesca | 1 |
Jialun Pan | 1 |
Masci, Chiara | 1 |
Maurizio Gabbrielli | 1 |
Mourdi, Youssef | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 3 |
Information Analyses | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Mourdi, Youssef; Sadgal, Mohammed; Berrada Fathi, Wafa; El Kabtane, Hamada – Turkish Online Journal of Distance Education, 2020
At the beginning of the 2010 decade, the world of education and more specifically e-learning was revolutionized by the emergence of Massive Open Online Courses, better known by their acronym MOOC. Proposed more and more by universities and training centers around the world, MOOCs have become an undeniable asset for any student or person seeking to…
Descriptors: Online Courses, Classification, Artificial Intelligence, Distance Education
CannistrĂ , Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics