NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1363937
Record Type: Journal
Publication Date: 2023-Jan
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Automatic Scoring of Student Feedback for Teaching Evaluation Based on Aspect-Level Sentiment Analysis
Ren, Ping; Yang, Liu; Luo, Fang
Education and Information Technologies, v28 n1 p797-814 Jan 2023
Student feedback is crucial for evaluating the performance of teachers and the quality of teaching. Free-form text comments obtained from open-ended questions are seldom analyzed comprehensively since it is difficult to interpret and score compared to standardized rating scales. To solve this problem, the present study employed aspect-level sentiment analysis using deep learning and dictionary-based approaches to automatically calculate the emotion orientation of text-based feedback. The results showed that the model using the topic dictionary as input and the attention mechanism had the strongest prediction effect in student review sentiment classification, with a precision rate of 80%, a recall rate of 79% and an F1 value of 79%. The findings identified issues that were not otherwise apparent from analyses of purely quantitative data, providing a deeper and more constructive understanding of curriculum and teaching performance.
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link.springer.com/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A