NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Krajcsi, Attila; Reynvoet, Bert – Developmental Science, 2024
Initial acquisition of the first symbolic numbers is measured with the Give a Number (GaN) task. According to the classic method, it is assumed that children who know only 1, 2, 3, or 4 in the GaN task, (termed separately one-, two-, three-, and four-knowers, or collectively subset-knowers) have only a limited conceptual understanding of numbers.…
Descriptors: Numbers, Number Concepts, Symbols (Mathematics), Children
Peer reviewed Peer reviewed
Direct linkDirect link
Gibson, Dominic J.; Berkowitz, Talia; Butts, Jacob; Goldin-Meadow, Susan; Levine, Susan C. – Developmental Science, 2023
Researchers have long been interested in the origins of humans' understanding of symbolic number, focusing primarily on how children learn the meanings of number words (e.g., "one", "two", etc.). However, recent evidence indicates that children learn the meanings of number gestures before learning number words. In the present…
Descriptors: Number Concepts, Nonverbal Communication, Symbols (Mathematics), Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Chi-Chuan Chen; Ilaria Berteletti; Daniel C. Hyde – Developmental Science, 2024
Symbolic numeracy first emerges as children learn the meanings of number words and how to use them to precisely count sets of objects. This development starts before children enter school and forms a foundation for lifelong mathematics achievement. Despite its importance, exactly how children acquire this basic knowledge is unclear. Here we test…
Descriptors: Preschool Children, Numeracy, Symbols (Mathematics), Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Haman, Maciej; Lipowska, Katarzyna – Developmental Science, 2023
In numerical cognition research, the operational momentum (OM) phenomenon (tendency to overestimate the results of addition and/or binding addition to the right side and underestimating subtraction and/or binding it to the left side) can help illuminate the most basic representations and processes of mental arithmetic and their development. This…
Descriptors: Preschool Children, Prior Learning, Mathematics Education, Number Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Hutchison, Jane E.; Ansari, Daniel; Zheng, Samuel; De Jesus, Stefanie; Lyons, Ian M. – Developmental Science, 2020
A long-standing debate in the field of numerical cognition concerns the degree to which symbolic and non-symbolic processing are related over the course of development. Of particular interest is the possibility that this link depends on the range of quantities in question. Behavioral and neuroimaging research with adults suggests that symbolic and…
Descriptors: Kindergarten, Numbers, Cognitive Processes, Young Children
Peer reviewed Peer reviewed
Direct linkDirect link
Prather, Richard – Developmental Science, 2021
Children's knowledge of arithmetic principles is a key aspect of early mathematics knowledge. Knowledge of arithmetic principles predicts how children approach solving arithmetic problems and the likelihood of their success. Prior work has begun to address how children might learn arithmetic principles in a classroom setting. Understanding of…
Descriptors: Attention, Number Concepts, Arithmetic, Children
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert – Developmental Science, 2017
Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…
Descriptors: Meta Analysis, Mathematics Skills, Correlation, Age Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Lussier, Courtney A.; Cantlon, Jessica F. – Developmental Science, 2017
Children and adults show behavioral evidence of psychological overlap between their early, non-symbolic numerical concepts and their later-developing symbolic numerical concepts. An open question is to what extent the common cognitive signatures observed between different numerical notations are coupled with physical overlap in neural processes.…
Descriptors: Bias, Children, Adults, Brain
Peer reviewed Peer reviewed
Direct linkDirect link
Hyde, Daniel C.; Simon, Charline E.; Berteletti, Ilaria; Mou, Yi – Developmental Science, 2017
Two non-verbal cognitive systems, an approximate number system (ANS) for extracting the numerosity of a set and a parallel individuation (PI) system for distinguishing between individual items, are hypothesized to be foundational to symbolic number and mathematics abilities. However, the exact role of each remains unclear and highly debated. Here…
Descriptors: Cognitive Ability, Mathematics Skills, Number Concepts, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Siegler, Robert S. – Developmental Science, 2016
The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…
Descriptors: Numbers, Theories, Individual Development, Symbols (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Dillon, Moira R.; Spelke, Elizabeth S. – Developmental Science, 2015
Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they…
Descriptors: Geometry, Young Children, Visual Aids, Freehand Drawing
Peer reviewed Peer reviewed
Direct linkDirect link
Rodic, Maja; Zhou, Xinlin; Tikhomirova, Tatiana; Wei, Wei; Malykh, Sergei; Ismatulina, Victoria; Sabirova, Elena; Davidova, Yulia; Tosto, Maria Grazia; Lemelin, Jean-Pascal; Kovas, Yulia – Developmental Science, 2015
The present study evaluated 626 5-7-year-old children in the UK, China, Russia, and Kyrgyzstan on a cognitive test battery measuring: (1) general skills; (2) non-symbolic number sense; (3) symbolic number understanding; (4) simple arithmetic--operating with numbers; and (5) familiarity with numbers. Although most inter-population differences were…
Descriptors: Arithmetic, Mathematics Skills, Numeracy, Number Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Lyons, Ian M.; Price, Gavin R.; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel – Developmental Science, 2014
Math relies on mastery and integration of a wide range of simpler numerical processes and concepts. Recent work has identified several numerical competencies that predict variation in math ability. We examined the unique relations between eight basic numerical skills and early arithmetic ability in a large sample (N = 1391) of children across…
Descriptors: Predictor Variables, Elementary School Students, Grade 1, Grade 2
Peer reviewed Peer reviewed
Direct linkDirect link
Opfer, John E.; Thompson, Clarissa A.; Furlong, Ellen E. – Developmental Science, 2010
Numeric magnitudes often bias adults' spatial performance. Partly because the direction of this bias (left-to-right versus right-to-left) is culture-specific, it has been assumed that the orientation of spatial-numeric associations is a late development, tied to reading practice or schooling. Challenging this assumption, we found that preschoolers…
Descriptors: Spatial Ability, Organizations (Groups), Preschool Education, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Iuculano, Teresa; Tang, Joey; Hall, Charles W. B.; Butterworth, Brian – Developmental Science, 2008
There are two different conceptions of the innate basis for numerical abilities. On the one hand, it is claimed that infants possess a "number module" that enables them to construct concepts of the exact numerosities of sets upon which arithmetic develops (e.g. Butterworth, 1999 ; Gelman & Gallistel, 1978). On the other hand, it has been proposed…
Descriptors: Number Concepts, Numeracy, Arithmetic, Information Processing