Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
Source
| Grantee Submission | 2 |
Author
| Allen, Laura K. | 2 |
| McNamara, Danielle S. | 2 |
| Dai, Jianmin | 1 |
| Dascalu, Mihai | 1 |
| Guerrero, Tricia A. | 1 |
| Jacovina, Matthew E. | 1 |
| Mills, Caitlin | 1 |
| Perret, Cecile | 1 |
| Soto, Christian M. | 1 |
Publication Type
| Speeches/Meeting Papers | 2 |
| Reports - Descriptive | 1 |
| Reports - Research | 1 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Dascalu, Mihai; Jacovina, Matthew E.; Soto, Christian M.; Allen, Laura K.; Dai, Jianmin; Guerrero, Tricia A.; McNamara, Danielle S. – Grantee Submission, 2017
iSTART is a web-based reading comprehension tutor. A recent translation of iSTART from English to Spanish has made the system available to a new audience. In this paper, we outline several challenges that arose during the development process, specifically focusing on the algorithms that drive the feedback. Several iSTART activities encourage…
Descriptors: Spanish, Reading Comprehension, Natural Language Processing, Intelligent Tutoring Systems

Peer reviewed
Direct link
