NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Brooks, Bill J.; Gilbuena, Debra M.; Krause, Stephen J.; Koretsky, Milo D. – Chemical Engineering Education, 2014
Active learning in class helps students develop deeper understanding of chemical engineering principles. While the use of multiple-choice ConcepTests is clearly effective, we advocate for including student writing in learning activities as well. In this article, we demonstrate that word clouds can provide a quick analytical technique to assess…
Descriptors: Active Learning, Chemical Engineering, Engineering Education, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Muller, Erich A. – Chemical Engineering Education, 2012
The historical development of the classical postulates of the second law of Thermodynamics can be traced back to the book by Sadi Carnot, "Reflections on the motive power of fire." While unique in its own right and in some sense revolutionary, the book starts with an analogy between heat engines and waterwheels. Waterwheels were common engines of…
Descriptors: Engines, Scientific Concepts, Scientists, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David – Chemical Engineering Education, 2012
The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…
Descriptors: Foreign Countries, Design, Engineering Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Vigeant, Margot; Prince, Michael; Nottis, Katharyn – Chemical Engineering Education, 2011
This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…
Descriptors: Science Activities, Thermodynamics, Heat, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P. – Chemical Engineering Education, 2011
Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…
Descriptors: Chemical Engineering, Laboratory Experiments, Science Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Elliott, J. Richard – Chemical Engineering Education, 2010
The topics of solution thermodynamics, activity coefficients, and complex formation are introduced through computational exercises and sample applications. The presentation is designed to be accessible to freshmen in a chemical engineering computations course. The MOSCED model is simplified to explain complex formation in terms of hydrogen…
Descriptors: Thermodynamics, Chemistry, Chemical Engineering, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Whitaker, Stephen – Chemical Engineering Education, 2009
Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…
Descriptors: Mechanics (Physics), Chemical Engineering, Scientific Principles, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph – Chemical Engineering Education, 2008
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
Descriptors: Organic Chemistry, Chemical Engineering, Science Instruction, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Wheeler, Dean R. – Chemical Engineering Education, 2005
This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.
Descriptors: Demonstrations (Educational), Classroom Techniques, Teaching Methods, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Haji, Shaker; Erkey, Can – Chemical Engineering Education, 2005
A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…
Descriptors: Kinetics, Spectroscopy, Undergraduate Students, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Benyahia, Farid – Chemical Engineering Education, 2005
A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…
Descriptors: Undergraduate Students, Design, Engineering Technology, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kear, Gareth; Albarran, Carlos Ponce-de-Leon; Walsh, Frank C. – Chemical Engineering Education, 2005
Undergraduates from chemical engineering, applied chemistry, and environmental science courses, together with first-year postgraduate research students in electrochemical technology, are provided with an experiment that demonstrates the reduction of dissolved oxygen in aerated seawater at 25°C. Oxygen reduction is examined using linear sweep…
Descriptors: Chemical Engineering, Chemistry, Undergraduate Students, Science Experiments