NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Michael E. Ellis; K. Mike Casey; Geoffrey Hill – Decision Sciences Journal of Innovative Education, 2024
Large Language Model (LLM) artificial intelligence tools present a unique challenge for educators who teach programming languages. While LLMs like ChatGPT have been well documented for their ability to complete exams and create prose, there is a noticeable lack of research into their ability to solve problems using high-level programming…
Descriptors: Artificial Intelligence, Programming Languages, Programming, Homework
Peer reviewed Peer reviewed
Direct linkDirect link
Murray, Lori L.; Wilson, John G. – Decision Sciences Journal of Innovative Education, 2021
Summary statistics and data visualizations are often used to explore data and draw preliminary conclusions. Although valuable, these tools do not always reveal the underlying patterns and trends in the data and can sometimes be misleading. We describe an approach for teaching the need for more advanced statistical analysis using multiple linear…
Descriptors: Statistics Education, Teaching Methods, Multiple Regression Analysis, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sankaran, Siva; Sankaran, Kris; Bui, Tung – Decision Sciences Journal of Innovative Education, 2023
Applying Herzberg's motivation-hygiene theory, we studied the determinants of student satisfaction in using R in a Decision Support Systems course that previously used Excel to teach Data Mining and Business Analytics (DMBA). The course is a degree requirement, and prior programming experience is not a prerequisite. We hypothesized that motivators…
Descriptors: Data Analysis, Programming Languages, Student Attitudes, Computer Science Education