Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 11 |
Descriptor
Source
Grantee Submission | 11 |
Author
McNamara, Danielle S. | 3 |
Allen, Laura K. | 2 |
Danielle S. McNamara | 2 |
Dascalu, Mihai | 2 |
Renu Balyan | 2 |
Akihito Kamata | 1 |
Albacete, Patricia | 1 |
Amy Johnson | 1 |
Arthur C. Graesser | 1 |
Benjamin D. Nye | 1 |
Chounta, Irene-Angelica | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Speeches/Meeting Papers | 7 |
Journal Articles | 4 |
Reports - Descriptive | 2 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 3 |
Higher Education | 2 |
Postsecondary Education | 2 |
Early Childhood Education | 1 |
Grade 2 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Middle Schools | 1 |
Primary Education | 1 |
More ▼ |
Audience
Location
Louisiana | 1 |
Pennsylvania (Pittsburgh) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Marilena Panaite; Mihai Dascalu; Amy Johnson; Renu Balyan; Jianmin Dai; Danielle S. McNamara; Stefan Trausan-Matu – Grantee Submission, 2018
Intelligent Tutoring Systems (ITSs) are aimed at promoting acquisition of knowledge and skills by providing relevant and appropriate feedback during students' practice activities. ITSs for literacy instruction commonly assess typed responses using Natural Language Processing (NLP) algorithms. One step in this direction often requires building a…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Algorithms, Decision Making
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
The ability to automatically assess the quality of paraphrases can be very useful for facilitating literacy skills and providing timely feedback to learners. Our aim is twofold: a) to automatically evaluate the quality of paraphrases across four dimensions: lexical similarity, syntactic similarity, semantic similarity and paraphrase quality, and…
Descriptors: Phrase Structure, Networks, Semantics, Feedback (Response)
Jinnie Shin; Renu Balyan; Michelle P. Banawan; Tracy Arner; Walter L. Leite; Danielle S. McNamara – Grantee Submission, 2023
Despite the proliferation of video-based instruction and its benefits--such as promoting student autonomy and self-paced learning--the complexities of online teaching remain a challenge. To be effective, educators require extensive training in digital teaching methodologies. As such, there's a pressing need to examine and comprehend the…
Descriptors: Algebra, Mathematics Instruction, Video Technology, Personal Autonomy
Menekse, Muhsin – Grantee Submission, 2020
This study addressed the role of the reflection-informed learning and instruction (RILI) model on students' academic success by using CourseMIRROR mobile system. We hypothesized that prompting students to reflect on confusing concepts stimulates their self-monitoring activities according to which students are expected to review their…
Descriptors: Reflection, Academic Achievement, Undergraduate Students, Instructional Effectiveness
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning
Albacete, Patricia; Jordan, Pamela; Katz, Sandra; Chounta, Irene-Angelica; McLaren, Bruce M. – Grantee Submission, 2019
This paper describes an initial pilot study of Rimac, a natural-language tutoring system for physics. Rimac uses a student model to guide decisions about "what content to discuss next" during reflective dialogues that are initiated after students solve quantitative physics problems, and "how much support to provide" during…
Descriptors: Natural Language Processing, Teaching Methods, Educational Technology, Technology Uses in Education
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Dascalu, Mihai; Jacovina, Matthew E.; Soto, Christian M.; Allen, Laura K.; Dai, Jianmin; Guerrero, Tricia A.; McNamara, Danielle S. – Grantee Submission, 2017
iSTART is a web-based reading comprehension tutor. A recent translation of iSTART from English to Spanish has made the system available to a new audience. In this paper, we outline several challenges that arose during the development process, specifically focusing on the algorithms that drive the feedback. Several iSTART activities encourage…
Descriptors: Spanish, Reading Comprehension, Natural Language Processing, Intelligent Tutoring Systems
Zhang, H.; Magooda, A.; Litman, D.; Correnti, R.; Wang, E.; Matsumura, L. C.; Howe, E.; Quintana, R. – Grantee Submission, 2019
Writing a good essay typically involves students revising an initial paper draft after receiving feedback. We present eRevise, a web-based writing and revising environment that uses natural language processing features generated for rubric-based essay scoring to trigger formative feedback messages regarding students' use of evidence in…
Descriptors: Formative Evaluation, Essays, Writing (Composition), Revision (Written Composition)
Graesser, Arthur; Li, Haiying; Forsyth, Carol – Grantee Submission, 2014
Learning is facilitated by conversational interactions both with human tutors and with computer agents that simulate human tutoring and ideal pedagogical strategies. In this article, we describe some intelligent tutoring systems (e.g., AutoTutor) in which agents interact with students in natural language while being sensitive to their cognitive…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Computer Simulation, Dialogs (Language)
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence